水下小目标快速识别的改进YOLO方法应用与验证
DOI:
CSTR:
作者:
作者单位:

武汉第二船舶设计研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Application and Verification of an Improved YOLO Method for Rapid Underwater Small Target Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大尺度欠驱动无人水下航行器自主航行中的障碍物快速识别存在的探测能力约束、实时性约束及资源约束,对一种高召回率的小目标快速识别方法进行了研究。提出了基于改进YOLO的小目标快速识别模型:引入GhostNet作为主干网络,通过特征图复用和线性变换策略降低了48.75%的计算量;在颈部网络嵌入CBAM注意力机制,强化小目标特征响应;设计动态加权Focal-EIoU损失函数,缓解正负样本失衡问题。在自建渔网声呐图像数据集上开展消融与对比实验,改进模型的各项指标达到:AP50较基准提升1.3个百分点达到97.5%、mAP提升5.7个百分点达到58.4%、召回率提升3.2个百分点达到97.3%,综合性能优于YOLOv8n、YOLOv11n等主流模型。三重协同优化有效平衡水下声呐图像的检测速度与精度,显著降低水下小目标漏检率,提升了水下小目标识别鲁棒性,为大尺度欠驱动无人水下航行器实时避障提供可靠技术支撑。

    Abstract:

    To address the constraints of detection capability, real-time performance, and computational resources in rapid obstacle identification for large-scale underactuated unmanned underwater vehicles (UUVs), a high-recall, rapid recognition method for small targets was investigated. A fast small-target recognition model based on an improved YOLO architecture is proposed: GhostNet is introduced as the backbone network, reducing the computational load by 48.75% through feature map reuse and linear transformation strategies. The Convolutional Block Attention Module (CBAM) is embedded in the neck network to enhance the feature response for small targets. Additionally, a dynamic weighted Focal-EIoU loss function is designed to alleviate the imbalance between positive and negative samples. Ablation and comparative experiments were conducted on a self-constructed sonar image dataset of fishing nets. The improved model""s performance metrics were as follows: the AP50 score reached 97.5%, an increase of 1.3 percentage points over the baseline model; the mAP improved by 5.7 percentage points to 58.4%; and the recall rate increased by 3.2 percentage points to 97.3%. The comprehensive performance surpasses that of mainstream models such as YOLOv8n and YOLOv11n. The triple synergistic optimization effectively balances detection speed and accuracy for underwater sonar images, significantly reduces the miss-detection rate for small underwater targets, and improves the robustness of small underwater target recognition. This research provides reliable technical support for real-time obstacle avoidance in large-scale underactuated UUVs.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-25
  • 最后修改日期:2025-11-06
  • 录用日期:2025-11-11
  • 在线发布日期:
  • 出版日期:
文章二维码