基于深度学习的水下目标识别算法研究
CSTR:
作者:
作者单位:

1.清江创新中心,湖北 武汉 430076 ;2.宜昌测试技术研究所,湖北 宜昌 443003

作者简介:

张舟一帆(1999-),男,硕士生,工程师,主要从事人工智能与自动化技术方向。

通讯作者:

中图分类号:

TN929.3

基金项目:


Research on Deep Learning Based Underwater Target Recognition Algorithms
Author:
Affiliation:

1.Qingjiang Innovation Center,Wuhan 430076 ,China ;2.Yichang Testing Technique Research Institute,Yichang 443003 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着海洋资源开发和国防安全需求的不断增长,水下目标识别技术的重要性日益凸显。系统地研究了基于深度学习的水下目标识别技术,分析了当前主流算法的性能特点及其改进方法。概述了水下目标识别面临的挑战,详细介绍了基于深度学习的两阶段(Two-Stage)算法和一阶段(One-Stage)算法;重点对比了 Faster R-CNN、YOLO 系列以及基于 Transformer 的目标检测算法在识别精度、实时性和鲁棒性等方面的表现;探讨了注意力机制和多尺度特征融合技术在水下目标识别中的应用,这些技术能够有效提高模型的泛化能力和识别效率;总结了不同算法在标准数据集以及自建水下数据集上的性能表现,并对未来的研究方向提出了展望。

    Abstract:

    With the continuous growth of the demand for marine resource development and national defense security,the importance of underwater target recognition technology has become increasingly prominent. In this paper,the underwater target recognition technology based on deep learning is systematically studied,the performance of the current mainstream algorithms is analyzed,and the improvement methods are put forward. Firstly,the challenges faced by underwater target recognition are summarized,and the Two-Stage algorithm and One-Stage algorithm based on deep learning are introduced in detail. The performance of algorithms such as Faster R-CNN,the YOLO series,and target detection algorithms based on Transformer are compared in terms of recognition accuracy,real-time performance,and robustness. In addition,the application of the attention mechanism and multi-scale feature fusion technology in underwater target recognition is discussed. These technologies can effectively improve the generalization ability and recognition efficiency of the model. Finally,the performance of different algorithms on standard datasets and self-built underwater datasets is summarized,and future research direction is proposed.

    参考文献
    相似文献
    引证文献
引用本文

张舟一帆. 基于深度学习的水下目标识别算法研究[J]. 数字海洋与水下攻防,2025,8(2):194-203.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-12
  • 出版日期:
文章二维码