水下航行器仿生流场感知方法研究
CSTR:
作者:
作者单位:

1.华南理工大学 土木与交通学院,广东 广州 510641 ;2.哈尔滨工程大学 船舶工程学院,黑龙江 哈尔滨 150001 ;3.智能海洋航行器技术全国重点实验室,黑龙江 哈尔滨 150001

作者简介:

徐文华(1991-),男,博士,助理研究员,主要从事水下流场感知、航行体尾迹追踪等研究。

通讯作者:

中图分类号:

U661.1

基金项目:

国家自然科学基金“基于仿鱼侧线的潜航器非定常外流场感知方法研究”(52401378);水动力学全国重点实验室开放基金“基于分布式压力数据的水下无人潜航器发射窗口识别方法”(JCKY2023201CA0201);广东省自然科学基金“仿生鱼编队推进的涡流场智能感知研究”(2023A1515111122);广东省自然科学基金“仿鱼侧线涡流智能感知与重构模型及其在仿生鱼尾迹追踪中的应用”(2024A1515012646)


Study on Biomimetic Flow Field Sensing Method of Underwater Vehicles
Author:
Affiliation:

1.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510641 ,China ;2.College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001 ,China ;3.NationalKey Laboratory of Intelligent Marine Vehicle Technology,Harbin 150001 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确识别水下航行器相对海流的攻角与航速对于多种作业具有重要意义,如潜航器在复杂海流环境中的运动控制、水下武器发射窗口识别以及海洋内波感知预警等。以 Suboff 潜艇标模为研究载体,开展仿生流场感知原理的水下航行器相对海流攻角与航速识别方法研究。首先,建立了水下航行器绕流场 CFD 与势流仿真模型,研究发现针对水下航行器头部非定常压力预报,CFD 与势流结果非常接近,因此基于势流模型可以快速准确地预报大攻角的水下航行器头部压力。之后,创建了结合势流理论与卡尔曼滤波水下航行器外流场参数识别模型。仿真与试验结果表明:流场参数识别模型在±80°攻角范围内,对攻角的识别误差在 3° 以内,航速识别相对误差在 5 %以内。

    Abstract:

    Accurately identifying the angle of attack and speed of underwater vehicles relative to ocean currents holds significant importance for various operations. These include motion control of underwater vehicles in complex ocean current environments,identification of launch windows for underwater weapons,and the perception and warning of internal ocean waves. This paper uses the Suboff submarine model as the research subject to investigate methods for identifying the angle of attack and speed of underwater vehicles relative to ocean currents based on the principle of biomimetic flow field perception. Initially,Computational Fluid Dynamics(CFD)and potential flow simulation models are established to study the flow fields surrounding underwater vehicles. It is discovered that for predicting unsteady pressure at the bow of underwater vehicles,the results from CFD and potential flow simulations are very similar. Consequently,it is feasible to use the potential flow model to quickly and accurately predict the bow pressure of underwater vehicles at high angles of attack. Then,a flow field parameter identification model for underwater vehicles is developed by integrating potential flow theory with Kalman filtering. Both simulation and experimental results demonstrate that the flow field parameter identification model can achieve an identification error within 3 degrees for the angle of attack across a range of ±80 degrees,and the relative error for speed recognition is within 5%.

    参考文献
    相似文献
    引证文献
引用本文

徐文华,许国冬,焦甲龙. 水下航行器仿生流场感知方法研究[J]. 数字海洋与水下攻防,2025,8(2):110-116.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-12
  • 出版日期:
文章二维码