2023, 6(1):10-16.DOI: 10.19838/j.issn.2096-5753.2023.01.002
摘要:水下成像存在颜色失真、图像对比度严重下降等问题。大多数基于深度学习的水下图像增强方法依赖仿真数据集,由于仿真与实测数据之间存在较大的分布差异,实测泛化能力受限。将水下图像增强任务划分为 2 个更简单,但是同时具有明确物理意义的子问题:颜色校正和对比度增强,提出基于物理模型分解的域内–域间迁移框架。首先,域内迁移校正图像颜色,通过学习对退化图像进行分解,在场景光层面通过对齐颜色退化,校正颜色失真同时保证其它成分完全不受影响。进一步,再次利用基于水下散射模型的分解策略,通过针对性迁移水下退化因素,使得仿真–实测域之间实现相互迁移和交互,增强水下图像对比度。实验结果表明:本方法在真实水下图像数据集上处理的结果,在色彩、纹理细节和清晰程度方面均优于现有的对比方法。
2023, 6(1):41-47.DOI: 10.19838/j.issn.2096-5753.2023.01.005
摘要:现有的基于深度学习的水下图像增强方法在仿真的水下图像上取得了良好的效果。但是,由于简化的仿真图像与复杂的真实图像之间存在较大差距,此类方法在处理真实水下图像时性能明显下降。为了解决真实水下图像增强问题,提出了一种联合生成–去除水下图像增强方法。该方法采用分解思路,将水下图像分解为干净的背景层和退化层,通过循环一致性损失和对抗性损失来更好地保留背景,进而实现真实图像和仿真图像之间的转换,既校正了图像颜色,又提升了图像对比度,实现良好的增强效果。实验结果表明, 本方法在真实水下图像数据集上处理的结果,在色彩、纹理细节和清晰程度方面均优于现有的对比方法。