-
0 引言
-
近年来,无人船在海事防务、海上搜救与资源勘探等商业和军事任务中发挥着重要的作用。但面向大范围海洋搜索任务时,单无人船难以高效的完成任务。相比之下,跨域协同与多无人船系统具有容错性强、效率高等优点,可更好地执行海洋任务[1-3]。编队控制是无人船协同控制的基本问题之一。无人船的编队方法有领航者–跟随者架构[4]、基于行为法[5]、人工势场法[6]和虚拟结构法[7]等。在这些编队方法中,领航者–跟随者法在海洋中应用较为广泛[8-9]。然而,不同的编队方法有着不同的优缺点。与单一编队方法相比,多种方法的结合可以增强优点,削弱缺点。文献[10] 提出了一种新的多移动机器人混合编队控制方法,将和基于行为的方法相结合,解决了编队和运动规划问题。文献[11]提出了一种有效的人工势场法结合领航者–跟随者编队控制算法。
-
滑模控制方法具有良好的鲁棒性,但滑模控制方法中的符号项会因为模型参数的不确定性和外界干扰而引起控制器的抖振[12-13]。为了解决抖振问题,常用的方法之一是用饱和函数代替符号项。文献[14]针对水下机器人的模型参数不确定性和外部干扰,提出了 3 种滑模控制方法。为了减少控制器中存在的抖振现象,利用饱和函数代替符号项,仿真结果表明该方法获得了良好的控制性能。此外,模糊逻辑规则或神经网络通常也用于消除抖振的现象[15-18]。文献[15]采用模糊函数近似逼近模型参数的不确定部分,削弱了控制器中的抖振现象。另外,扰动观测器也常用于观测外界干扰[19-20]。
-
近年来,模糊逻辑控制与滑模控制方法的结合已经成为一种先进的控制技术,该方法既保证了系统的稳定性,又提高了对参数变化的强鲁棒性[21-22]。文献[22]采用该方法消除了滑模控制律中不连续项引起的抖振现象。这种技术被称为模糊滑模控制方法。模糊滑模控制方法主要有 2 个优点[23]:1)模糊推理系统提供了定性的解释,使得它不需要系统模型的信息。2)利用滑模概念建立的模糊控制规则,保证了系统的稳定性和鲁棒性。基于上述 2 点,模糊滑模控制方法得到了广泛的应用。在文献[26]–[27] 中,自适应模糊滑模控制方法被应用于水下机器人的定位中,该方法通过补偿未知干扰来提高水下机器人的跟踪性能。文献[24]设计了一种模糊观测器,该观测器用于估计由未知动力学和自适应逼近误差补偿相结合的复合未知项,并提出了基于模糊观测器的自适应跟踪控制律,保证了误差信号的全局渐近稳定。
-
综上所述,本文研究了具有未知动力学和外界干扰的无人船编队控制问题。首先,采用人工势场法与领航者–跟随者相结合的编队方法,使得每艘无人船间无碰撞且一致运动。然后,基于 Lyapunov 能量函数设计了模糊控制规则,削弱了所提控制方法中的抖振现象。此外,为了提高整个系统的鲁棒性和稳定性,设计了一种扰动观测器来准确估计未知的动力学和作用在无人船上的干扰。最后,仿真结果验证了该控制算法的有效性。
-
1 问题描述
-
1.1 基于人工势场的领航者–跟随者编队方法
-
引理 1[25]:一种固定时间稳定系统为
-
式中:为 4 个常量;是偶数;为奇数且有 ;该系统的收敛时间T 满足:
-
在常用的编队方法中,领航者–跟随者方法是应用最广泛的一种编队方法。一般地,领航者–跟随者方法需要领航者来提供轨迹信息,其他跟随者与领航者保持一定的距离 d。同时,为了避免无人船之间发生碰撞,本文引入人工势场的避碰方法。综上,基于人工势场的领航者–跟随者编队方法,可得到第 i 艘无人船的轨迹信息:
-
式中:为领航者的轨迹信息;为净势场函数,可表达为
-
式中:为吸引势场函数;表示排斥势场函数。无人船的编队运动受到势场函数的约束以避免发生碰撞。
-
式中:为 3 个常数。当满足和时,净势场函数可取得最小值,此时无人船系统可形成期望的编队构型。人工势场梯度函数可表达为
-
1.2 无人船数学模型
-
为了更好的描述无人船的编队控制问题,图1 为无人船的编队示意图。其中,建立了自身坐标系与大地坐标系,和分别代表领航者与跟随者之间的距离。
-
式中:为第 i 艘无人船的位置和航向角;代表速度; Mi 为惯性矩阵; 为科氏向心力矩阵;为阻尼矩阵;和分别代表无人船的控制输入和由风浪引起的外界干扰;代表着基于航向角的旋转矩阵且和。其中,。
-
图1 编队场景图
-
Fig.1 Formation scene diagram
-
结合公式(10)和公式(11),第 i 艘无人船的动力学方程可化简如下:
-
其中整理模型矩阵为
-
一般地,准确的无人船模型参数是难以获得的。本文将模型参数矩阵考虑为确定部分和不确定部分,表达为
-
式中:和为名义模型部分;和为模型参数不确定部分。
-
因此,无人船的动力学方程可再一步简写为
-
式中,表示为复合扰动:
-
为了方便表示,无人船动力学方程最终可简写为
-
式中,。
-
2 编队控制方法设计及稳定性分析
-
无人船编队系统的收敛速率、鲁棒性以及控制器中的抖振问题都直接影响着最终的编队结果。考虑上述因素,基于滑模控制方法、模糊控制理论和扰动观测器,本文设计了一种基于扰动观测器的非奇异快速模糊终端滑模编队控制方法。
-
基于引理 1,可设计一种非奇异终端滑模面:
-
式中:为常数;为偶数;为奇数并满足 ;为了避免奇异现象,设计为
-
式中:。
-
定义编队误差为
-
式中,代表期望轨迹,设计如下:
-
对公式(19)所设计的滑模面求导可得:
-
式中:。
-
从无人船的动力学方程中知:
-
将公式(27)代入公式(26)中,得:
-
此时,无人船的控制输入可设计如下:
-
可简化为
-
当编队系统状态抵达至滑模面 时,则有:
-
设计 Lyapunov 函数V1为
-
求导得:
-
由引理 1 得,误差可在固定时间内收敛至原点处,其收敛时间的上界为
-
对公式(29)控制律分析可知,虽其拥有快速的收敛性能,但仍有 2 个问题:1)常数与非连续函数会引起系统发生抖振现象。2)为了处理外界干扰以提高系统的鲁棒性,需要获得复合扰动上界的先验值。
-
本文采用模糊控制方法对进行处理,消除存在的抖振现象。同时,设计一种扰动观测器来在线估计复合扰动并消除其对系统的影响。
-
为了削弱控制律中的抖振问题,可采用模糊控制方法。该方法为单输入–单输出系统,其中滑模曲面为输入变量,为输出变量。对所设计的滑模曲面进行模糊化,模糊集由三角和梯形隶属函数组成。输出值为单值成员函数,输出值的模糊集在之间。滑模曲面的语言变量为{NB, NS,ZE,PS 和 PB},其中,N 为负,P 为正,S 为小,B 为大,ZE 为 0。输出值语言变量为 {Smaller,Small,Zero,Big 和 Bigger},其中,Smaller 为较小,Small 为小,Zero 为 0,Big 为大,Bigger 较大。,的输入–输出成员函数如图2 所示,其中Φ 表示滑模面的边界层。
-
基于模糊控制规则,非线性项可由模糊增益取代,则无人船的控制输入可进一步设计为
-
式中,。
-
为设计出模糊增益的模糊规则,选取 Lyapunov 函数:
-
将公式(35)代入,可得对公式(36)求导可得:
-
图2 Sij 和 kfzij 的成员函数
-
Fig.2 Member function of Sij and kfzij
-
为了保持公式(37)负定,模糊规则可设计如下:
-
若Sij为 NB,则kfzij为 Smaller;若Sij为 NS,则kfzij为 Small;若Sij为 ZE,则kfzij为 Zero;若Sij为 PS,则kfzij为 Big;若Sij为 PB,则kfzij为 Bigger。
-
基于模糊推理规则库和组合规则,模糊推理机制实现了模糊输入集Sij到输出集kfzij的映射。利用中心平均解模糊器从模糊输出集中解出清晰值 kfzij:
-
式中:N 表示规则数;为模糊规则;和为单值模糊集的权重。
-
接着,针对外界干扰和模型参数不确定部分进行处理。首先将这 2 种不利因素视为一个复合扰动;然后设计一种扰动观测器对其进行实时观测;最后,在公式(35)的基础上对控制律进行扩增,以消除复合扰动的影响。扩增后的控制律为
-
为确保编队系统的稳定性,现做出以下合理的假设。
-
假设 1:针对复合扰动,假设存在一个未知正数,满足。
-
假设 2:扰动观测器的增益矩阵 Γ 为对称正定矩阵,即。
-
扰动观测器设计如下:
-
式中:为复合扰动的观测值;为观测复合扰动的辅助向量。观测误差为
-
对公式(40)求导,得:
-
结合公式(41)与公式(18),有:
-
由公式(44),进一步有:
-
最终可得到:
-
定理 1:当满足假设 1 和假设 2 时,基于公式 (18)动力学方程和公式(19)滑模面,在公式(39) 控制律的作用下,编队跟踪误差可收敛至原点。
-
证明:选用下面 Lyapunov 函数:
-
对其求导可有:
-
将公式(46)代入有:
-
项可保持负定,即。因此,第一项为负定,根据不等式得
-
合理的选择增益矩阵 Γ,可使得负定,即满足:
-
根据 Lyapunov 稳定性判据可知,非奇异滑模面 Si 和编队系统误差可收敛至平衡点附近。
-
3 仿真验证
-
本部分进行仿真验证上述所提控制方法的有效性。无人船的模型参数矩阵表示为
-
水动力参数选择如下:m11=25.8 kg,m22=33.8 kg, m33=2.76 kg·m2,m23=m32=6.2 kg·m,m23=m32=6.2 kg·m, d11=27 kg/s,d22=17 kg/s,d33=0.5 kg·m2 /s,d23=0.2 kg·m/s, d32=0.5 kg·m/s。
-
由风浪引起的干扰选择为并考虑 20%的模型参数不确定性。USV1 和 USV2 的初始位置设置为。领航者 USV3 的参考轨迹。控制参数可选择为 。
-
考虑由 3 艘无人船组成的编队系统,由 “USV1”“USV2”和“USV3”表示。假设 USV3 为领航者,其轨迹信息为,其他无人船作为跟随者与领航者形成期望的编队构型。无人船间的通信拓扑图如图3 所示。假设无人船的期望队形为等腰三角形。基于该通信拓扑结构,采用上述所设置的控制参数,在控制律的作用下,该无人船编队系统最终可形成所期望的三角形编队构型。图4 为 3 艘无人船的编队运动轨迹。可以看出,基于所设计的控制方法,3 艘无人船最终形成了所期望的三角队形,这体现了所提控制方法的有效性。同时,所选无人船的长度为 1.2 m,基于此条件,从图5 中可以直观地看出,从编队运动开始到形成期望的编队构型的过程中,跟随者与领航者之间的距离始终大于无人船的长度,且最终两者的距离为 4 m。这表明编队运动从开始到结束无碰撞现象,这体现出了人工势场方法的避碰性能,该编队方法可为实际应用提供一定的参考。图6 和图7 分别表示跟踪误差与误差范数的收敛情况。从图中可以看出,该误差变化值在所设计的控制律的作用下可收敛至 0,验证了本文控制方法的有效性与稳定性。图8 为无人船的控制输入图。因所设计的控制方法中引入了模糊逻辑方法,从图中可以看出,控制输入较平滑,这体现了模糊控制方法的优势,即消除了由符号项所引起的部分抖振现象,进一步增强了所设计的控制方法的实用性。图9 和图10 分别展示了针对 2 艘无人船所设计的扰动观测器的对复合扰动的观测效果。从图中可看出,所设计的扰动观测器可精确地观测复合扰动,这验证了所设计的扰动观测器的有效性,增强了编队系统的鲁棒性。
-
图3 通讯拓扑结构
-
Fig.3 Communication topology
-
图4 编队轨迹
-
Fig.4 Formation trajectory
-
图5 跟随者与领航者之间的距离
-
Fig.5 Distance between followers and leader
-
图6 轨迹跟踪误差
-
Fig.6 Trajectory tracking error
-
图7 轨迹跟踪误差范数
-
Fig.7 Norm of trajectory tracking error
-
图8 控制输入
-
Fig.8 Control input
-
图9 USV1 的扰动观测器
-
Fig.9 Disturbance observer for USV1
-
图10 USV2 的扰动观测器
-
Fig.10 Disturbance observer for USV2
-
4 结束语
-
本文针对外界干扰与模型参数不确定的问题,提出了一种基于扰动观测器的非奇异快速模糊终端滑模无人船编队控制方法。为了形成期望的编队构型并避免无人船间发生碰撞,选用了基于人工势场法的领航–跟随者编队方法,使得无人船无碰撞且一致运动。考虑到由符号函数项引起的抖振现象,设计了基于 Lyapunov 函数的模糊控制规则,消除了控制器中的抖振现象。为了提高编队系统的鲁棒性和稳定性,采用了一种扰动观测器来精确观测复合扰动,消除其对系统状态的影响。仿真结果表明,本文所提出的控制方法可保证无人船形成期望的编队构型,为无人船编队控制提供了方案。
-
参考文献
-
[1] 胡建章,唐国元,王建军,等.水面无人艇集群系统研究[J].舰船科学技术,2019,41(4):83-88.
-
[2] 谢伟,陶浩,龚俊斌,等.海上无人系统集群发展现状及关键技术研究进展[J].中国舰船研究,2021,16(1):7-17.
-
[3] 张婷婷,蓝羽石,宋爱国.无人集群系统自主协同技术综述[J].指挥与控制学报,2021,7(2):127-136.
-
[4] CUI R X,GE S S,HOW B V,et al.Leader-follower formation control of underactuated autonomous underwater vehicles[J].Ocean Engineering,2010,37(17):1491-1502.
-
[5] BALCH T,ARKIN R C.Behavior-based formation control for multirobot teams[J].IEEE Transactions on Robotics and Automation,1998,14(6):926-939.
-
[6] PASHNA M,YUSOF R,ISMAIL Z H,et al.Autonomous multi-robot tracking system for oil spills on sea surface based on hybrid fuzzy distribution and potential field approach[J].Ocean Engineering,2020,207:107238.
-
[7] DO K D.Formation control of multiple elliptical agents with limited sensing ranges[J].Automatica,2012,48(7):1330-1338.
-
[8] PENG Z H,WANG J,WANG D.Distributed containment maneuvering of multiple marine vessels via neurodynamicsbased output feedback[J].IEEE Transactions on Industrial Electronics,2017,64(5):3831-3839.
-
[9] XU J.Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints[J].Automatica,2016,68:228-236.
-
[10] YANG F,LIU F,LIU S R,et al.Hybrid formation control of multiple mobile robots with obstacle avoidance[C]//8th World Congress on Intelligent Control and Automation.Jinan:IEEE,2010.
-
[11] BARNES L E.A potential field-based formation control methodology for robot swarms[D].Tampa:University of South Florida,2008.
-
[12] YANG L,YANG J Y.Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J].International Journal of Robust Nonlinear Control,2011 21(16):1865-1879.
-
[13] CHEN M,SHI P,LIM C C.Robust constrained control for MIMO nonlinear systems based on disturbance observer[J].IEEE Transactions on Automatic Control,2015,60(12):3281-3286.
-
[14] QIAO L,YI B W,WU D F,et al.Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles[J].Ocean Engineering,2017,134:157-172.
-
[15] VAN M.An enhanced robust fault tolerant control based on an adaptive fuzzy PID-nonsingular fast terminal sliding mode control for uncertain nonlinear systems[J].IEEE-ASME Transactions on Mechatronics,2018,23(3):1362-1371.
-
[16] CUI R X,ZHANG X,CUI D.Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities[J].Ocean Engineering,2016,123:45-54.
-
[17] PENG Z H,WANG J.Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(4):535-544.
-
[18] VAN M.An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer[J].ISA Transactions,2019,90:30-40.
-
[19] LEE J Y,CHANG P H,JIN M L.Adaptive integral sliding mode control with time-delay estimation for robot manipulators[J].IEEE Transactions on Industrial Electronics,2017,64(8):6796-6804.
-
[20] CUI R X,CHEN L P,YANG C G,et al.Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities[J].IEEE Transactions on Industrial Electronics,2017,64(8):6785-6795.
-
[21] KAYNAK O,ERBATUR K,ERTUGNRL M.The fusion of computationally intelligent methodologies and sliding-mode control-a survey[J].IEEE Transactions on Industrial Electronics,2001,48(1):4-17.
-
[22] SHAHRAZ A,BOOZARJOMEHRY R B.A fuzzy sliding mode control approach for nonlinear chemical processes[J].Control Engineering Practice,2009,17(5):541-550.
-
[23] BESSA W M,DUTRA M S,KREUZER E.Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller[J].Robotics and Autonomous Systems,2008,56(8):670-677.
-
[24] WANG N,GAO Y,SUN Z,et al.Nussbaum-based adaptive fuzzy tracking control of unmanned surface vehicles with fully unknown dynamics and complex input nonlinearities[J].International Journal of Fuzzy Systems,2017,20(1):259-268.
-
[25] CAO L,XIAO B,GOLESTANI M,et al.Faster fixed-time control of flexible spacecraft attitude stabilization[J].IEEE Transactions on Industrial Informatics,2020,16(2):1281-1290.
-
[26] WANG N,ZHU Z B,QIN H D,et al.Finite-time extended state observer-based exact tracking control of an unmanned surface vehicle[J].International Journal of Robust Nonlinear Control,2021,31(5):1704-1719.
-
[27] CHE G F,YU Z.Neural-network estimators based fault-tolerant tracking control for AUV via ADP with rudders faults and ocean current disturbance[J].Neurocomputing,2020,411:442-454.
-
摘要
针对含有模型参数不确定性、外界干扰与抖振现象的无人船编队问题,提出了一种基于扰动观测器的非奇异模糊终端滑模编队控制方法。首先,将领航者–跟随者与人工势场法相结合,获得无人船的编队构型并保证无碰撞现象;其次,基于 Lyapunov 能量函数设计出模糊控制规则,消除了控制器中的抖振问题; 进而,提出了一种扰动观测器来补偿未知动态和外界干扰,增强了系统的鲁棒性和稳定性。通过理论分析和仿真结果验证了所提控制方法的有效性。基于所设计的编队控制方法,无人船最终可形成期望的编队构型。
Abstract
In order to solve formation control problems of model parameter uncertainty,external disturbances and chattering phenomena,a nonsingular fuzzy terminal sliding-mode formation control method based on a disturbance observer is proposed. Firstly,the leader-follower is combined with the artificial potential field method to achieve the formation configuration of unmanned surface vehicles while ensuring collision avoidance. Secondly, fuzzy control rules are designed based on Lyapunov energy function to eliminate chattering phenomena in the controller. Furthermore,a disturbance observer is proposed to compensate for unknown dynamics and external disturbances,which enhances the robustness and stability of the system. The effectiveness of the proposed control method is verified through theoretical analysis and simulation results. Based on the designed formation control method,unmanned surface vehicles ultimately achieve the desired formation configuration.