en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄顺(1998-),男,博士生,主要从事仿生流体力学研究。

通讯作者:

银波(1983-),男,博士,副研究员,主要从事仿生模拟、生物流体力学研究。

中图分类号:O355

文献标识码:A

文章编号:2096-5753(2023)03-0279-07

DOI:10.19838/j.issn.2096-5753.2023.03.003

参考文献 1
DAS A,SHUKLA R K,GOVARDHAN R N.Existence of a sharp transition in the peak propulsive efficiency of a low-Re pitching foil[J].Journal of Fluid Mechanics,2016,800:307-326.
参考文献 2
LEWIN G C,HAJ-HARIRI H.Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow[J].Journal of Fluid Mechanics,2003,492:339-362.
参考文献 3
DENG J,SHAO X M,REN A L.Numerical study on propulsive performance of fish-like swimming foils[J].Journal of Hydrodynamics,2006,18(6):681-687.
参考文献 4
THEKKETHIL N,SHARMA A,AGRAWAL A.Unified hydrodynamics study for various types of fishes-like undulating rigid hydrofoil in a free stream flow[J].Physics of Fluids,2018,30(7):077107.
参考文献 5
ANDERSEN A,BOHR T,SCHNIPPER T,et al.Wake structure and thrust generation of a flapping foil in two-dimensional flow[J].Journal of Fluid Mechanics,2017,812:R4.
参考文献 6
BORAZJANI I,SOTIROPOULOS F.Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes[J].Journal of Experimental Biology,2008,211(10):1541-1558.
参考文献 7
ESSAPIAN F S.Speed-induced skin folds in the bottle-nosed porpoise,Tursiops truncatus[J].Museum of Comparative Zoology,1955,43:1-4.
参考文献 8
SHUKLA S,THEKKETHIL N,SHARMA A,et al.Hydrodynamics study on a traveling wave-based undulating surface of a hydrofoil in a free-stream flow[J].Physical Review Fluids,2022,7(8):084703.
参考文献 9
DONG G J,LU X Y.Characteristics of flow over traveling wavy foils in a side-by-side arrangement[J].Physics of Fluids,2007,19(5):057107.
参考文献 10
TYTELL E D.The hydrodynamics of eel swimming II.Effect of swimming speed[J].Journal of Experimental Biology,2004,207(19):3265-3279.
参考文献 11
TANEDA S,TOMONARI Y.An experiment on the flow around a waving plate[J].Journal of the Physical Society of Japan,1974,36(6):1683-1689.
参考文献 12
IVASHCHENKO B D,IL'ICHEV K P,POSTOLOVSKII S N.Hydrodynamic effect of a traveling wave[J].Fluid Dynamics,1975,10(1):122-124.
参考文献 13
SHEN L,ZHANG X,YUE D,et al.Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion[J].Journal of Fluid Mechanics,2003,484:197-221.
参考文献 14
SOORAJ P,SHARMA A,AGRAWAL A.Dynamics of co-rotating vortices in a flow around a bio-inspired corrugated airfoil[J].International Journal of Heat and Fluid Flow,2020,84:108603.
参考文献 15
WU C J,XIE Y Q,WU J Z.“Fluid roller bearing” effect and flow control[J].Acta Mechanica Sinica,2003,19(5):476-484.
参考文献 16
TIAN F B,LU X Y,LUO H.Propulsive performance of a body with a traveling-wave surface[J].Physical Review E,2012,86(1):016304.
参考文献 17
TIAN F B,XU Y Q,TANG X Y,et al.Study on a self-propelled fish swimming in viscous fluid by a finite element method[J].Journal of Mechanics in Medicine and Biology,2013,13(6):1340012.
参考文献 18
HUANG S,GUO D,WANG Y,et al.Hydrodynamics of morphology for thunniform swimmers:effects of the posterior body shape[J].Ocean Engineering,2023,272:113866.
参考文献 19
KHALID M S U,WANG J S,AKHTAR I,et al.Why do anguilliform swimmers perform undulation with wavelengths shorter than their bodylengths?[J].Physics of Fluids,2021,33(3):031911.
目录contents

    摘要

    控制圆柱体或翼型的行波壁会抑制大规模的分离流动,进而减少阻力。鱼类在游动过程中经常出现行波壁,而行波壁对鱼类游动性能的影响机制尚不清楚。以金枪鱼游动为基础,耦合行波壁,采用锐利界面浸没边界法(IBM)解决摆动过程带来的大变形运动边界问题。结果表明:行波壁的出现改变了金枪鱼体后涡的形成和发展,进而改变了摩擦阻力和压差阻力的分布;耦合行波壁使得摩擦阻力的波动幅值增加,压差阻力有所减小,从而降低了金枪鱼游动过程的阻力。研究的行波壁减阻机制可应用于提高仿生机器鱼的性能,随着智能材料的发展,该机制将在仿生机器鱼的研制中体现其现实意义。

    Abstract

    Traveling wave surface governing cylinders or airfoils inhibits large-scale separation flows,thereby reducing resistance. Traveling wave surface often occurs on fish during swimming,and the influence mechanism of traveling wave surface on fish swimming performance is not clear. Based on tuna swimming,this paper uses the sharp interface immersion boundary method(IBM)to solve the boundary problem of large deformation motion caused by the swing process. The results show that traveling wave surface changes the formation and development of the tuna posterior body vortices,and then changes the distribution of friction resistance and differential pressure resistance. The coupling traveling wave surface increases the amplitude of the friction resistance and decreases the differential pressure resistance,thereby reducing the resistance during tuna swimming process. The resistance reduction mechanism of traveling wave surface studied in this paper can be applied to improve the performance of bionic robotic fish,and with the development of smart materials,this mechanism will show its practical significance in the development of bionic robotic fish.

  • 0 引言

  • 了解鱼类推进机理有助于设计高效、多用途的水下航行器。鱼体及鱼鳍的运动,即俯仰[1]、升沉[2]、波动运动[3]和拍打运动(结合俯仰和升沉运动)[4-5] 是鱼类实现高效运动的基础。一般来说,鱼类利用身体的波动来推进,由脊椎上从头到尾的振幅增加行波[6]。此外,鱼类游动过程中还会出现沿流向方向的反相行波的表面波动,即行波壁,例如, ESSAPIAN[7]研究发现海豚在捕捉猎物时皮肤上产生的波浪和皱纹。

  • 图1 2 种不同类型的行波运动示意图[8]

  • Fig.1 Schematic diagram for 2 different types of traveling wave motions[8]

  • 对于身体波动,在以前的数值研究中,变化的幅度被建模为身体起伏的线性[5]、二次[9]和指数[10],另一方面,行波壁的变化振幅认为与局部厚度成正比。基于此,科研人员将其简化为水翼模型。针对水翼波动,THEKKETHIL 等人[4]提出了一个通用的运动学模型,身体波动随着波长的增加而渐近于身体俯仰。此外,他们发现俯仰运动提供更大的推力,而波动提供更大的推进效率。对于水翼行波壁,TANEDA 和 TOMONARY[11]通过实验发现,当板上波的波速 c 小于自由流流速u时,就会发生流动分离。对于c>u,他们发现流线从波的一个表面发出,并在另一个表面上结束。IVASHCHENKO 等人[12]通过数值计算发现在水翼上基于同相行波表面的槽中形成了稳定的涡旋。SHEN 等人[13]使用直接数值模拟(DNS)进行基于流行波的壁起伏,观察到上游行波(即c/u<0)和下游行波(即c/u>0)在c/u<1处的流动分离增强,而对于c/u>1,下游行波发生流动的重新附着。

  • SOORAJ 等人[14]在他们的工作中表明,在固定波纹翼型的凹槽中会形成涡流,使得波纹翼型比普通翼型更有效。正如吴锤结等人所解释的那样,这些被捕获的涡流起到了滚子轴承的作用[15]。对于流体滚子轴承来讲,在身体表面的流向行波的波谷中的顺时针(CW)涡流可用作滚子轴承,减少身体阻力。

  • 图2 滚子轴承作用[15]

  • Fig.2 Fluid roller bearing effect[15]

  • TIAN 等人[16-17]比较了只有身体波动的自主游动的鱼与较大波数/波速的耦合行波壁水翼进行游动的鱼的最终平均巡航速度,分别是波动波速的 0.58 倍和 0.52 倍。前者通过进行横向波动,在反向冯卡门涡流作用下向前移动。后者使用表面波动的鱼的尾迹没有涡街,鱼的推力是由边界层外的射流和行波背风侧的高压产生。

  • 上述的工作都是基于二维水翼进行研究的,对于三维金枪鱼游动,目前主要针对身体波动参数进行研究,耦合行波壁的探究还未开展。金枪鱼摆动过程,身体表面的变形主要发生在体后,本文在体后增加行波壁,以此探索行波壁对金枪鱼游动性能的影响机制,从而为仿生金枪鱼的设计提供理论依据。

  • 1 数值方法

  • 1.1 当前问题的物理和数学描述

  • 金枪鱼的三维模型由身体(TK,图3 橙色部分)和尾鳍(CF,图3 灰色部分)2 部分组成,身体占全长 L 的 80%,本文通过高度和宽度方向的截面正交曲线 yx)和 zx)构建,如图3(a)和图3(b)。对于每个x[0,80%L],椭圆横截面分别由宽度和高度曲线 yx)和 zx)的半轴定义。这些横截面组合成为双对称三维身体模型。尾鳍采用月牙形结构。

  • 图3 建立三维金枪鱼模型

  • Fig.3 Three-dimensional tuna simulation model

  • 在金枪鱼模型身体部分体后表面的宽度 y 方向增加行波壁。体后行波壁模型在宽度方向的截面曲线方程如下:

  • ysxL, t=ys0+

  • ALys02x-LLsin2πk2x-LL-ft, xL2

  • 式中:ys0 为未变形横截面的 y 坐标;AL为局部振幅–厚度比,AL=0.1,定义为局部振幅与局部厚度的比值;本研究选择体后行波壁的参数波数 k= 2,波动频率 f = 16。

  • 图4 建立耦合行波壁的三维金枪鱼模型

  • Fig.4 Three-dimensional tuna simulation model with traveling wave surface

  • 金枪鱼自身的摆动根据脊椎的摆动情况来确定,即按鱼体波曲线进行,本文中采取的鱼体波曲线为

  • yxL, t=0.016-0.066xL+0.15xL2sin2πk1xL-f1t

  • 式中:身体波动采用的鱼体波形式中的波数 k1=1.25 ;波动频率 f1=4。上述参数的选择参考 HUANG 等人[18]。选取这些参数,身体的波动过程如图5 所示。为了便于对行波壁减阻的机制进行研究,我们将耦合行波壁的金枪鱼摆动工况命名为 TWS,仅有摆动的工况命名为 TUNA。

  • 图5 金枪鱼身体波动采用的鱼体波曲线

  • Fig.5 Midlines of the thunniform swimming mode during undulatory motion

  • 1.2 控制方程和数值方法

  • 金枪鱼游动的流体环境为不可压缩牛顿流体,其控制方程为 N–S 方程及连续方程。并采用无穷远处的来流速度 u 和特征长度 L 进行无量纲化,得到无量纲的连续方程及 N–S 方程为

  • uixi=0

  • uit+ujuixj=-1ρpxi+1Rexjuixj

  • 式中:xi 为以 L 作无量纲化的 3 个坐标方向,x1x2x3 分别对应于 xyz 方向; ui 为以 u 作无量纲化的 3 个坐标方向,u1,u2,u3 分别对应于 u,v,w 方向;P 为以 ρu2 作无量纲化的压力;ρ为流体密度;Re 为雷诺数,形式为Re=uL/v, 为运动粘性系数。

  • 采用基元变量的单元中心共置排列对不可压缩 N-S 方程进行离散化,并使用基于有限差分的笛卡尔网格浸没边界法求解。这是一种解决具有大位移/变形边界的流固耦合问题的方法。空间项使用二阶中心差分方案进行离散化,使用 Chorin 投影– 校正方法的变体对方程进行时间积分,并使用 Crank-Nicolson 方案以保守形式离散动量方程的所有项。采用锐利界面来处理流体–固体界面。

  • 图6 显示了本文中使用的非均匀笛卡尔网格,其中尺度小的网格尺寸Δ=1/200 在鱼体附近使用,经过网格大小的独立性研究,更详细的介绍可以参考文献[18],尺度大的网格尺寸在远离鱼体模型的地方使用。

  • 图6 计算域中设置与非均匀笛卡尔网格分布

  • Fig.6 Simulation configuration and nonuniform Cartesian grid distribution in the computational domain

  • 图7 对尾鳍在 x 方向受力进行网格无关性验证

  • Fig.7 Comparison of the x-axis force coefficients on caudal fin for demonstration of the grid independence

  • 求解流场后,从金枪鱼周围的流动变量中投射鱼体部分和尾鳍上的表面压力和剪切力,我们采用无量纲系数( CFx)来表征 x 方向受力的变化:

  • CFx=Fx1/2ρu2SCF

  • 式中:u=1.6L/s;尾鳍面积 SCF=0.0273L2。本文定义沿 x 正方向的力为阻力,即CD=CFx,反之为推力。由下文可知,体后行波壁主要对身体受力产生影响,且身体受力主要为阻力,故本文主要分析 CD

  • 2 行波壁对金枪鱼游动的影响机制

  • 为了便于分析受力的变化特征,我们选择对金枪鱼游泳的自由度在来流方向限制住,给定来流速度。选定的来流速度为金枪鱼自主游动情况下,稳定巡航阶段的游动速度,即 u=1.6L/s。本部分给出了仿真结果,包括计算模型的流体动力学性能和涡结构。在所有数值模拟中,结果采用第 6 个摆动周期,此时流场达到稳定的周期性变化状态。

  • 图8 显示了工况 TUNA,摆动过程中身体(TK) 和尾鳍(CF)在 1 个摆动周期过程中流向力系数的变化特征。它表明 CF 在整个起伏行程中产生推力,而 TK 主要产生阻力。尾鳍阻力曲线出现 2 个峰值,推力曲线也出现类似情况。此外,我们分析尾迹涡形成和脱落的具体过程,尾迹涡的演化情况如图9 所示,摆动过程中会在身体的体后形成较强的涡,定义为体后涡(PBV),体后涡的脱落会与尾鳍前缘形成的涡(LEV)发生碰撞,这个过程会有益于增强尾鳍前缘涡(LEV)的强度,有利于推力产生。随着鱼体摆动,涡向尾鳍的后缘发展,形成了尾鳍后缘涡(TEV),进一步的摆动使得尾鳍后缘涡脱落,在尾迹形成交错排列的反卡门涡街,涡街呈链式涡环结构,R1 和 R3 即是其中的环状结构。

  • 图8 鱼体不同部位 1 个周期内沿 x 轴受力变化趋势

  • Fig.8 Temporal variations in x-axis force coefficients during1 representative undulatory cycle

  • 图9 三维尾迹涡

  • Fig.9 Three-dimensional instantaneous wake structures

  • 2.1 水动力学性能

  • 金枪鱼体后耦合行波壁,影响身体受到的阻力,对尾鳍产生的推力影响较小。因此,本文主要分析行波壁对阻力的影响机制。我们对 1 个周期内的阻力系数进行统计,其平均阻力系数 C-D,TUNA 为 0.321,TWS 模型为 0.310,耦合行波壁使阻力降低 3.43%。

  • 周期内的阻力系数变化如图10 所示,并绘制其分量摩擦阻力系数 CDF和压差阻力系数 CDP 的变化特征。可以看出阻力主要由摩擦阻力组成,在摆动过程中变化不大,压差阻力改变了阻力的波动幅度,这与 KHALID 等人[19]的结果一致。此外,压差阻力在摆动过程中,会对鱼的游动形成回复的推进和阻碍作用。行波壁的出现,改变了身体的压力分布,降低了平均阻力系数;对周期平均摩擦阻力影响较小,但是增加了其振幅,该变化会使鱼类在游动过程中感到不舒服。

  • 图10 1 个周期内阻力及其分量的变化趋势

  • Fig.10 Temporal variations of drag and components during1 representative undulatory cycle

  • 2.2 涡结构

  • 为了探索行波壁对阻力的影响机制,本文对 2 种工况下三维涡结构进行分析,如图11 所示,图11(a)和 11(c)为工况 TWS,图11(b)和 11(d) 为工况 TUNA。由于左–右冲程和右–左冲程具有对称性,我们主要针对右–左冲程进行分析。其中,对阻力出现波峰(t/τ=0.6)和波谷(t/τ=0.8) 2 个时刻的涡结构进行研究。发现行波壁的出现会改变体后涡(PBV)的分布,连续的体后涡会部分分散,摩擦阻力振幅加大。此外,左右两侧体后涡的差异有所增加,这归因于 PBVR 和 PBVL 的相互作用减弱,附着在体后左侧和右侧的 PBV 会导致低压区和高压区的形成,进而产生沿 x 轴的力,形成的沿负向的力会克服阻力。

  • 图11 瞬时三维尾流结构

  • Fig.11 Instantaneous three-dimensional wake structures

  • 2.3 压力分布

  • 我们进一步探讨了附着在躯干的左侧和右侧 PBV 而导致压力差的原因。随着鱼体的波动,出现了与体后和尾鳍一起具有振荡的正压和负压梯度的压力区域,这是由于 PBVs 的产生和转移造成的。在t/τ=0.6t/τ=0.8 阻力出现幅值的时刻,TWS 体后两侧的压力差高于 TUNA。因此对压差阻力造成影响。

  • 图12 瞬时压力系数分布

  • Fig.12 Instantaneous pressure coefficient contours

  • 3 结束语

  • 控制圆柱体或翼型的行波壁可以抑制大规模的分离流动,以减少阻力。本文以金枪鱼游动为基础,耦合行波壁,以了解一种新的减阻机制。并采用锐利界面浸没边界法(IBM)解决摆动过程带来的大变形运动边界问题。结果表明:体后行波壁的出现改变了体后涡的形成和发展,表现为附着在身体体后的连续的涡部分分散,增加了摩擦阻力的振动幅度。此外,左右两侧体后涡的差异会有所增加,降低了压差阻力。使得金枪鱼的所受阻力整体上减少 3.43%。目前,对于行波壁的减阻机制尚处于探索阶段,下一步将分析行波壁在不同参数下的减阻效果,进而了解更广泛的减阻机制,随着智能材料和人造肌肉的快速发展,行波壁控制将在不久的将来应用于仿生机器鱼的研制。

  • 参考文献

    • [1] DAS A,SHUKLA R K,GOVARDHAN R N.Existence of a sharp transition in the peak propulsive efficiency of a low-Re pitching foil[J].Journal of Fluid Mechanics,2016,800:307-326.

    • [2] LEWIN G C,HAJ-HARIRI H.Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow[J].Journal of Fluid Mechanics,2003,492:339-362.

    • [3] DENG J,SHAO X M,REN A L.Numerical study on propulsive performance of fish-like swimming foils[J].Journal of Hydrodynamics,2006,18(6):681-687.

    • [4] THEKKETHIL N,SHARMA A,AGRAWAL A.Unified hydrodynamics study for various types of fishes-like undulating rigid hydrofoil in a free stream flow[J].Physics of Fluids,2018,30(7):077107.

    • [5] ANDERSEN A,BOHR T,SCHNIPPER T,et al.Wake structure and thrust generation of a flapping foil in two-dimensional flow[J].Journal of Fluid Mechanics,2017,812:R4.

    • [6] BORAZJANI I,SOTIROPOULOS F.Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes[J].Journal of Experimental Biology,2008,211(10):1541-1558.

    • [7] ESSAPIAN F S.Speed-induced skin folds in the bottle-nosed porpoise,Tursiops truncatus[J].Museum of Comparative Zoology,1955,43:1-4.

    • [8] SHUKLA S,THEKKETHIL N,SHARMA A,et al.Hydrodynamics study on a traveling wave-based undulating surface of a hydrofoil in a free-stream flow[J].Physical Review Fluids,2022,7(8):084703.

    • [9] DONG G J,LU X Y.Characteristics of flow over traveling wavy foils in a side-by-side arrangement[J].Physics of Fluids,2007,19(5):057107.

    • [10] TYTELL E D.The hydrodynamics of eel swimming II.Effect of swimming speed[J].Journal of Experimental Biology,2004,207(19):3265-3279.

    • [11] TANEDA S,TOMONARI Y.An experiment on the flow around a waving plate[J].Journal of the Physical Society of Japan,1974,36(6):1683-1689.

    • [12] IVASHCHENKO B D,IL'ICHEV K P,POSTOLOVSKII S N.Hydrodynamic effect of a traveling wave[J].Fluid Dynamics,1975,10(1):122-124.

    • [13] SHEN L,ZHANG X,YUE D,et al.Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion[J].Journal of Fluid Mechanics,2003,484:197-221.

    • [14] SOORAJ P,SHARMA A,AGRAWAL A.Dynamics of co-rotating vortices in a flow around a bio-inspired corrugated airfoil[J].International Journal of Heat and Fluid Flow,2020,84:108603.

    • [15] WU C J,XIE Y Q,WU J Z.“Fluid roller bearing” effect and flow control[J].Acta Mechanica Sinica,2003,19(5):476-484.

    • [16] TIAN F B,LU X Y,LUO H.Propulsive performance of a body with a traveling-wave surface[J].Physical Review E,2012,86(1):016304.

    • [17] TIAN F B,XU Y Q,TANG X Y,et al.Study on a self-propelled fish swimming in viscous fluid by a finite element method[J].Journal of Mechanics in Medicine and Biology,2013,13(6):1340012.

    • [18] HUANG S,GUO D,WANG Y,et al.Hydrodynamics of morphology for thunniform swimmers:effects of the posterior body shape[J].Ocean Engineering,2023,272:113866.

    • [19] KHALID M S U,WANG J S,AKHTAR I,et al.Why do anguilliform swimmers perform undulation with wavelengths shorter than their bodylengths?[J].Physics of Fluids,2021,33(3):031911.

  • 参考文献

    • [1] DAS A,SHUKLA R K,GOVARDHAN R N.Existence of a sharp transition in the peak propulsive efficiency of a low-Re pitching foil[J].Journal of Fluid Mechanics,2016,800:307-326.

    • [2] LEWIN G C,HAJ-HARIRI H.Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow[J].Journal of Fluid Mechanics,2003,492:339-362.

    • [3] DENG J,SHAO X M,REN A L.Numerical study on propulsive performance of fish-like swimming foils[J].Journal of Hydrodynamics,2006,18(6):681-687.

    • [4] THEKKETHIL N,SHARMA A,AGRAWAL A.Unified hydrodynamics study for various types of fishes-like undulating rigid hydrofoil in a free stream flow[J].Physics of Fluids,2018,30(7):077107.

    • [5] ANDERSEN A,BOHR T,SCHNIPPER T,et al.Wake structure and thrust generation of a flapping foil in two-dimensional flow[J].Journal of Fluid Mechanics,2017,812:R4.

    • [6] BORAZJANI I,SOTIROPOULOS F.Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes[J].Journal of Experimental Biology,2008,211(10):1541-1558.

    • [7] ESSAPIAN F S.Speed-induced skin folds in the bottle-nosed porpoise,Tursiops truncatus[J].Museum of Comparative Zoology,1955,43:1-4.

    • [8] SHUKLA S,THEKKETHIL N,SHARMA A,et al.Hydrodynamics study on a traveling wave-based undulating surface of a hydrofoil in a free-stream flow[J].Physical Review Fluids,2022,7(8):084703.

    • [9] DONG G J,LU X Y.Characteristics of flow over traveling wavy foils in a side-by-side arrangement[J].Physics of Fluids,2007,19(5):057107.

    • [10] TYTELL E D.The hydrodynamics of eel swimming II.Effect of swimming speed[J].Journal of Experimental Biology,2004,207(19):3265-3279.

    • [11] TANEDA S,TOMONARI Y.An experiment on the flow around a waving plate[J].Journal of the Physical Society of Japan,1974,36(6):1683-1689.

    • [12] IVASHCHENKO B D,IL'ICHEV K P,POSTOLOVSKII S N.Hydrodynamic effect of a traveling wave[J].Fluid Dynamics,1975,10(1):122-124.

    • [13] SHEN L,ZHANG X,YUE D,et al.Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion[J].Journal of Fluid Mechanics,2003,484:197-221.

    • [14] SOORAJ P,SHARMA A,AGRAWAL A.Dynamics of co-rotating vortices in a flow around a bio-inspired corrugated airfoil[J].International Journal of Heat and Fluid Flow,2020,84:108603.

    • [15] WU C J,XIE Y Q,WU J Z.“Fluid roller bearing” effect and flow control[J].Acta Mechanica Sinica,2003,19(5):476-484.

    • [16] TIAN F B,LU X Y,LUO H.Propulsive performance of a body with a traveling-wave surface[J].Physical Review E,2012,86(1):016304.

    • [17] TIAN F B,XU Y Q,TANG X Y,et al.Study on a self-propelled fish swimming in viscous fluid by a finite element method[J].Journal of Mechanics in Medicine and Biology,2013,13(6):1340012.

    • [18] HUANG S,GUO D,WANG Y,et al.Hydrodynamics of morphology for thunniform swimmers:effects of the posterior body shape[J].Ocean Engineering,2023,272:113866.

    • [19] KHALID M S U,WANG J S,AKHTAR I,et al.Why do anguilliform swimmers perform undulation with wavelengths shorter than their bodylengths?[J].Physics of Fluids,2021,33(3):031911.