-
0 引言
-
舰艇目标航行会向水中辐射声信号,舰艇机械结构、螺旋浆等周期往复运动,会产生大量线谱信号,通过检测线谱信号可实现对舰艇目标的被动探测[1-4]。常见的线谱检测方法多是以离散傅里叶变换(Discrete Fourier Transformation,简记为DFT) 为基础的衍生算法。如平均周期图法,该方法对接收数据进行分段DFT变换,取变换后复序列的模幅度信息,计算功率谱估计值,实现线谱信号检测[5-10]。文献[11-19]在DFT基础上,构建二元假设检验问题,并依据信号统计特性,推导得到广义似然比检测器,进行线谱信号检测。Kay等对周期图谱估计结果进行背景能量归一化,从而构建了一种具有恒虚警特性的线谱检测器,由于该方法对整段接收数据进行DFT处理,因此对硬件处理性能要求较高,且估计得到的功率谱背景起伏方差较大[11]。Wan等根据分段DFT估计得到功率谱统计特性,构建了一种广义似然比检测器,该方法线谱检测性能优于平均周期图法,但同样不能获得分段DFT间的线谱相干处理增益[12]。Wang等补偿各分段DFT数据间的相位差,利用相位补偿后的数据构建了一种具有恒虚警特性的线谱检测器,可获得分段DFT数据间的线谱相干处理增益[13]。
-
上述DFT类线谱检测方法主要构建于分段DFT基础上,检测过程中均利用DFT幅度信息。平稳噪声背景下,DFT频率分辨带宽内线谱信号幅值持续高于噪声背景,此时对分段DFT结果进行时域相加累积可获得较优的累积增益。但实际水声干扰环境中声场噪声背景起伏较大,常常表现为时域非平稳噪声。非平稳噪声背景下,对分段DFT累积过程中,不可避免地引入非平稳噪声背景中短时出现的强幅值噪声,使积分结果中线谱信噪比大幅降低,性能急剧恶化。针对上述问题,本文提出了一种适用于非平稳噪声背景的线谱相干检测方法。相比常规DFT类线谱检测方法,所提方法在非平稳噪声背景下受背景噪声幅度起伏的影响小,对相位稳定的线谱信号具有更好的线谱检测性能,且能够获得对线谱信号的相干处理增益。
-
1 数据模型
-
含有线谱信号的时域采样数据记为 x(n),将 x(n)分为多个数据段,每段含有 N 个数据点,第 l 分段数据:
-
式中:n 为每段内数据点序号,为段序号,为线谱信号幅度;为线谱信号真实频点对应的频率值;为背景噪声。对上述分段信号进行DFT变换:
-
式中,为离散整数点,。
-
图1 时域接收数据分段
-
Fig.1 Time-domain received data segmentation
-
2 常规线谱检测方法
-
1)平均周期图法。
-
平均周期图法对求取模值,舍弃相位信息,之后对各分段模值进行平方累加,计算得到功率谱估计值,以检测线谱信号。平均周期图法计算表达式为
-
2)CGLRT方法。
-
文献[13]所述相干广义似然比检测器(Coherent Generalized Likelihood Ratio Test,简记为CGLRT),对各分段DFT数据分别补偿相位,使各段数据中信号相位对齐,噪声相位保持随机,对补偿相位后的各分段数据进行累积,可获得对信号相干处理增益。CGLRT方法检测统计量表达式为
-
上述方法均利用分段DFT变换结果的幅度信息,进行幅值累加或能量累加。平稳噪声背景下,DFT频率分辨带宽内线谱信号能量持续高于噪声背景,即中信号能量高于噪声背景能量。此时,对各分段数据累加可获得对信号的累积增益。非平稳噪声背景下,噪声背景幅度往往会出现短时剧烈起伏,如第数据段中噪声能量远高于其它数据段,噪声能量,具有较低的信噪比。此时,对各分段DFT数据累加则会引入噪声幅值较大的数据段,使累积结果T CGLRT 和T Period 中线谱信噪比大幅降低,线谱检测性能恶化。由此,降低非平稳噪声幅值短时剧烈起伏的影响,有助于改善非平稳噪声背景下的DFT类线谱检测方法性能。
-
3 改进的CGLRT线谱相干检测方法
-
为改善时域非平稳噪声幅度短时剧烈起伏对DFT基线谱检测方法的影响,可对不同分段DFT结果进行幅度归一化,实现时域幅度均衡。但对于仅包含线谱幅度信息的平均周期图法,幅度归一化会损失线谱信息,而无法检测线谱。为通过幅度归一化降低时域非平稳噪声起伏的影响,本文主要思路是充分利用目标线谱相位稳定的特性,构建归一化幅度的线谱相位相干检测器,以保留线谱信息,实现时域幅度均衡,同时可获得对线谱信号的相干处理增益。具体实现过程为:首先,对CGLRT进行等价变换,推导出以单一为变量的简化检验统计量表达式;之后,在该表达式基础上归一化幅度,进而提出一种改进的CGLRT线谱相干检测方法( Modified Coherent Generalized Likelihood Ratio Test,简记为MCGLRT)。
-
3.1 CGLRT等价变换
-
结合式(5)和式(7),可得:
-
再将式(8)带入式(6)得:
-
根据式(9)和式(10)可得:
-
根据自然对数函数的单调性,检验统计量T CGLRT 等价于:
-
3.2 幅度归一化
-
在式(12)所示CGLRT等价形式基础上,对DFT变换结果进行幅度归一化,以降低分段数据累积过程中短时剧烈起伏噪声的影响,实现对线谱信号相干累积,所构建的MCGLRT方法检测统计量:
-
所提MCGLRT方法主要计算步骤如下:
-
1)计算第l段数据观测序列的DFT求得;
-
2)对复序列进行幅度归一化即
-
3)按式(14)计算复序列的“周期图”功率谱估计值
-
4)在范围内求取式(14)最大值,对最大值进行幅度门限判决,可实现对线谱信号检测,由不同频率点 k 处最大值可得到谱图。
-
4 仿真分析
-
本文通过仿真分析,比较了平均周期图法、 CGLRT及所提MCGLRT方法在平稳噪声和非平稳噪声背景下的性能。为描述背景噪声时域幅度非平稳程度,参照文献[22]广义功率谱平坦系数,定义背景噪声时域幅度起伏平坦系数为
-
式中:表示背景噪声幅度包络信号;表示背景噪声幅度包络信号的平均功率;。噪声背景时域平稳时,。随着背景噪声幅度起伏程度变大,值逐渐变小。
-
4.1 平稳噪声下性能分析
-
仿真条件:为比较分析平稳噪声下平均周期图法、 CGLRT方法、所提MCGLRT方法的性能,采用蒙特卡洛法比较分析3者的线谱检测性能。平稳高斯白噪声背景中存在频率为400Hz线谱信号,背景噪声时域幅度起伏平坦系数为。采样数据时长8s,采样率为10kHz。3者方法中均将接收数据分为80段,每段1 000点数据。虚警概率取10-2,蒙特卡洛次数为5 000。图2为3种方法的检测概率随信噪比变化曲线,信噪比为线谱信号功率与噪声功率之比。
-
由图2所示,相同检测概率下,所提MCGLRT方法所需SNR高于CGLRT方法约0.8dB,主要因为所提MCGLRT方法幅度归一化过程中损失了一定线谱信息,检测性能略逊于CGLRT方法。但所提MCGLRT方法能够充分利用相位信息,可获得对线谱信号相干处理增益,故相同检测概率下,要优于平均周期图法约2dB。
-
图2 检测概率随SNR变化曲线()
-
Fig.2 Curves of detection probability vs.SNR()
-
4.2 非平稳噪声下性能分析
-
仿真条件:为仿真分析非平稳噪声背景下各方法的性能,在前述仿真条件基础上改变背景噪声时域幅度起伏程度,时域幅度起伏平坦系数分别为和两种情况下波形如图3所示。保持背景噪声起伏包络不变,仿真分析3种方法的检测概率随信噪比变化曲线如图4,其中信噪比为采样时间内线谱信号功率与噪声平均功率之比。信噪比为–35dB和 –30dB时,3种方法的谱图分别如图5–8所示。
-
图3 非平稳接收数据时域波形
-
Fig.3 Time-domain waveform of non-stationary received data
-
图4 检测概率随SNR变化曲线(和)
-
Fig.4 Curves of detection probability vs.SNR(和)
-
图5 非平稳噪声背景下谱图(,SNR=–35dB)
-
Fig.5 Spectrograms in non-stationary noise background(,SNR=–35dB)
-
图6 非平稳噪声背景下谱图(,SNR=–35dB)
-
Fig.6 Spectrograms in non-stationary noise(, SNR=–35dB)
-
图7 非平稳噪声背景下谱图(,SNR=–30dB)
-
Fig.7 Spectrograms in non-stationary noise background(,SNR=–30dB)
-
图8 非平稳噪声背景下谱图(,SNR=–30dB)
-
Fig.8 Spectrograms in non-stationary noise background(,SNR=–30dB)
-
如图4所示,上述和两种非平稳噪声背景仿真条件下,达到相同检测概率,本文所提MCGLRT方法所要求的输入信噪声比优于CGLRT方法约0.9dB和6dB,优于平均周期图法5dB和15dB。主要原因是平均周期图法、CGLRT法中对接收数据的幅度信息进行累积,受噪声背景短时剧烈起伏的影响,分段累积结果中线谱信噪比大幅降低;本文所提MCGLRT方法,对分段接收数据DFT变换结果进行频域幅度归一化,受噪声背景短时剧烈起伏的影响较小。此外,由图5–8所示谱图也可看出,信噪比为–35dB时,所提MCGLRT方法相比平均周期图法、CGLRT法具有更清晰的线谱谱峰,随信噪比升高,平均周期图法、 CGLRT方法线谱谱峰趋于清晰。上述仿真结果表明本文所提MCGLRT方法在非平稳噪声背景下具有更优的线谱检测性能。
-
5 结束语
-
本文针对时域非平稳噪声背景下常规DFT基线谱检测方法性能下降问题,推导了CGLRT的一种等价变换式,在此基础上对分段DFT结果进行幅度归一化,提出一种改进的CGLRT线谱相干检测方法,即MCGLRT方法。仿真结果表明,所提MCGLRT方法线谱检测性能优于平均周期图法。时域平稳高斯白噪声背景下,所提MCGLRT方法线谱检测性能略逊于CGLRT方法,但噪声背景呈现短时剧烈起伏等非平稳特性时,线谱检测性能优于CGLRT方法。
-
参考文献
-
[1] 孙军平,杨军,林建恒,等.船舶水下辐射噪声信号理论模型及仿真[J].物理学报,2016,65(12):151-160.
-
[2] 曾赛,杜选民,范威.水下对转桨无空化噪声调制理论分析与试验研究[J].声学学报,2017,42(6):641-651.
-
[3] JANSEN E,JONG C D.Experimental assessment of underwater acoustic source levels of different ship types[J].IEEE Journal of Oceanic Engineering,2017,42(2):439-448.
-
[4] WALES S C,HEITMEVER R M.An ensemble source spectra model for merchant ship-radiated noise[J].The Journal of the Acoustical Society of America,2002,111(3):1211-1231.
-
[5] ROSENLICHT M.Introduction to Spectral Analysis[M].New York:Dover Publications Inc.,2005.
-
[6] COOLEY J W,TUKEY J W.An algorithm for the machine calculation of complex Fourier series[J].Mathematics of Computation,1965,19(90):297-301.
-
[7] HARRIS F J.On the use of windows for harmonic analysis with the discrete Fourier transform[J].Proceedings of the IEEE,1978,66(1):51-83.
-
[8] 陈韶华,陈川,赵冬艳.噪声中的线谱检测及自动提取研究[J].应用声学,2009,28(3):220-225.
-
[9] 陶笃纯.噪声和振动谱中线谱的提取和连续谱平滑[J].声学学报,1984,9(6):337-344.
-
[10] 吴国清,李靖,陈耀明,等.舰船噪声识别(Ⅰ)——总体框架、线谱分析和提取[J].声学学报,1998,23(5):394-400.
-
[11] KAY S M,GABRIEL J R.Optimal invariant detection of a sinusoid with unknown parameters[J].IEEE Transactions on Signal Processing,2002,50(1):27-40.
-
[12] WAN C R,GOH J T,CHEE H T.Optimal tonal detectors based on the power spectrum[J].IEEE Journal of Oceanic Engineering,2000,25(4):540-552.
-
[13] WANG Q,WAN C R.A novel CFAR tonal detector using phase compensation[J].IEEE Journal of Oceanic Engineering,2005,30(4):900-911.
-
[14] GABRIEL J R,KAY S M.On the relationship between the GLRT and UMPI tests for the detection of signals with unknown parameters[J].IEEE Transactions on Signal Processing,2005,53(11):4194-4203.
-
[15] DeMAIO A,KAY S M,FARINA A.On the invariance,coincidence,and statistical equivalence of the GLRT,Rao Test,and Wald Test[J].IEEE Transactions on Signal Processing,2010,58(4):1967-1979.
-
[16] GHOBADZADEH A,GAZOR S,TABAN M R,et al.Invariance and optimality of CFAR detectors in binary composite hypothesis tests[J].IEEE Transactions on Signal Processing,2014,62(14):3523-3535.
-
[17] KAY S M.Optimal invariant detection of a sinusoid with unknown parameters[J].IEEE Transactions on Signal Processing,2002,50(1):27-40.
-
[18] RAMPRASHAD S A,PARKS T W.Locally most powerful invariant tests for signal detection[J].IEEE Transactions on Information Theory,1998,44(3):1283-1288.
-
[19] LIU W J,LIU J,HUANG L,et al.Robust GLRT approaches to signal detection in the presence of spatial-temporal uncertainty[J].Signal Processing,2016,118:272-284.
-
[20] 陈韶华,郑伟,付继伟.通过相位内插与补偿提高相干平均线谱检测性能[J].声学学报,2015,40(5):675-681.
-
[21] 戴文舒,陈亚,陈新华,等.差分二次平均修正的频域相位补偿线谱检测方法[J].兵工学报,2014,35(10):1630-1637.
-
[22] TKACENKO A,VAIDYANATHAN P P.The role of filter banks in sinusoidal frequency estimation[J].Journal of the Franklin Institute,2001,338(5):517-547.
-
摘要
舰艇目标航行时往往向水中辐射大量线状谱结构的声波信号,线谱信号检测对舰艇目标的被动探测至关重要。实际水下环境噪声常表现为时域非平稳噪声,常规离散傅里叶变换类线谱检测方法时域积分时,不可避免会引入非平稳噪声背景中出现的短时强干扰噪声,使积分结果中线谱信噪比大幅降低,线谱检测性能急剧恶化。为解决上述问题,对分段离散傅里叶变换结果进行幅度归一化,补偿分段线谱信号间相位差,提出了一种非平稳噪声背景下的线谱相干检测方法。仿真结果表明,相比常规 DFT 类线谱检测方法,所提方法能够降低时域非平稳背景噪声起伏影响,具有更优的非平稳噪声背景下线谱检测性能,并能获得对线谱信号的相干处理增益。
Abstract
Ships in voyage usually radiate a large number of tonal signals,which are significant for the passive detection of ship targets. The actual underwater environment noise usually manifests as time-domain non-stationary noise. The short-term strong component in non-stationary noise is inevitably introduced into the time-domain integration process of Discrete Fourier Transform(DFT)used for tone detection. The signal-to-noise ratio of tone in the integration result is greatly reduced,and the tonal signal detection performance has deteriorated sharply. To solve the above problem,amplitude normalization is conducted on the processing of DFT results,and the phase difference between segmented tonal signals is compensated. Then,a coherent tone detection method in non-stationary noise is proposed. Simulation results show that the proposed method can reduce the influence of time-domain non-stationary noise fluctuations. Compared with traditional DFT-like methods,the proposed method has better tone detection performance in non-stationary noise background,as well as a coherent processing gain of the adjacent data segments.
Keywords
tone detection ; non-stationary noise ; amplitude normalization