水下拍动翼塔筒尾涡能量捕获
作者:
作者单位:

重庆交通大学 航运与船舶工程学院

基金项目:

重庆交通大学研究生科研创新项目资助,“山区风机叶片覆冰形态下冰层脱落数值预报方法研究”。(2024S0094)


Numerical Study on Energy Capture from Tower Wake by Underwater Flapping WingQIAO Gang 1,TIAN Yu 1,LI Runbo 1,ZHANG Yinbin 1,OU Chuanzhong 1,SHI Fulong1,2,3,*
Author:
Affiliation:

School of Shipping and Naval Architecture, Chongqing Jiaotong University

Fund Project:

Supported by the Graduate Scientific Research Innovation Project of Chongqing Jiaotong University, "Research on Numerical Prediction Method for Ice Layer Shedding under Ice Accretion Morphology of Wind Turbine Blades in Mountainous Areas" (2024S0094)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • | | | |
  • 文章评论
    摘要:

    【目的】拍动翼型作为一种广泛应用于研究能量提取的流动机制的简化模型,该系统从潮流能中捕获能量并转换为电能输出,虽然拍动翼型在水下均匀流条件下的动态行为已有广泛研究,但在实践中可能会遇到包括非定常涡旋在内的复杂来流条件,因此需要针对NACA0015翼型在有圆柱尾流效应时进行深入研究。【方法】通过CFD技术,数值研究不同运动参数对其水动力特性及能量收集效率,分析与探究水下拍动翼运动过程中的涡旋结构,以及俯仰振幅、升沉振幅对系统捕能效率的影响。【结果】研究结果表明,随着升沉振幅增大,能量捕捉效率也会提高。此外,还发现圆柱尾涡对拍动翼水动力性能的影响随俯仰振幅的增大而减小。【结论】通过分析不同运动参数下拍动翼系统的水动力性能及能量收集效率,提出了一种高效收集海上风场潮流能的参考方案,不仅对提高海上风场效能具有重要意义,还对于消除潜在的塔筒涡激振动具有积极意义。

    Abstract:

    [Purpose] The flapping foil, as a simplified model for energy extraction studies, converts tidal energy into electrical output. While its behavior under uniform flow is well-studied, complex flow conditions with unsteady vortices require further investigation of NACA0015 airfoil under cylinder wake effects. [Methods] Using CFD simulations, this study examines hydrodynamic characteristics and energy harvesting efficiency under various motion parameters, analyzing vortex structures and the effects of pitching and heaving amplitudes. [Results] Energy capture efficiency increases with heaving amplitude, while cylinder wake effects decrease with larger pitching amplitude. [Conclusion] The analysis provides a reference scheme for efficient tidal energy collection in offshore wind farms, contributing to both improved efficiency and reduced tower vortex-induced vibrations.

    参考文献
    [1] 陶赟.拍动翼式能量捕捉系统数值模拟与实验研究[D]. 南京航空航天大学,2020.2020.000480
    [2] YANOVYCH V, DUDA D, URUBA V, et al. The structure of turbulent flow behind the NACA 0012 airfoil at high angles of attack and low Reynolds number[C]. MATEC Web of Conferences. EDP Sciences, 2021, 345: 00034.
    [3] MARTíN ALCáNTARA A, FERNANDEZ FERIA R, SANMIGUEL ROJAS E. Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack[J]. Physics of Fluids, 2015, 27(7): 073602.
    [4] KURTULUS D F. On the wake pattern of symmetric airfoils for different incidence angles at Re= 1000[J]. International Journal of Micro Air Vehicles, 2016, 8(2): 109-139.
    [5] 朱卫军, 庄舒青, 陈东阳, 等. 摆式振荡翼塔筒尾涡潮流能捕获系统的水动力性能分析[J]. 西北工业大学学报, 2023, 41 (01): 188-197.
    [6] WANG Z, DU L, SUN X. A numerical study of flow interaction between a cylinder and an oscillating airfoil by using an immersed boundary method[J]. Acta Mechanica Sinica, 2024, 40(4): 1-23.
    [7] HAN R, LIU W, YANG X L, et al. Effect of NACA0012 airfoil pitching oscillation on flow past a cylinder[J]. Energies, 2021, 14(17): 5582.
    [8] KINSEY T, DUMAS G. Parametric study of an oscillating airfoil in a power-extraction regime[J]. AIAA journal, 2008, 46(6): 1318-1330.
    [9] MAJUMDAR D, BOSE C, SARKAR S. Capturing the dynamical transitions in the flow-field of a flapping foil using immersed boundary method[J]. Journal of Fluids and Structures, 2020, 95: 102999.
    [10] YIN P, XIN J, SHI F, et al. 2-DOF vortex-induced vibration of two rigidly-connected cylinders in parallel and tandem arrangements by a Cartesian grid method[J]. Ocean Engineering, 2024, 291: 116479.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:4
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-02-20
  • 最后修改日期:2025-03-13
  • 录用日期:2025-03-17
文章二维码