铝水制氢系统设计与试验研究
作者:
作者单位:

1.中国海洋工程研究院青岛;2.蓝海易氢动力青岛有限公司


Design and Experimental Study of Aluminum-Water Hydrogen Generation System
Author:
Affiliation:

1.China Institute of Ocean EngineeringTsing Tao;2.Blue Ocean Easy HyPower (Qingdao) Co., Ltd.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为解决深远海环境中能源系统续航能力不足的问题,本研究设计并分析验证了一种基于铝水反应的制氢系统,并将其与燃料电池系统集成,以适应水下复杂工况需求。反应器采用井字形加强骨架和轻量化高强度材料,提高了结构刚度并优化了动态进水调控与散热设计。在模拟深远海密闭环境的实验平台上,进行了冷启动、热启动、压力稳定性及水下联合运行测试。结果表明,该系统能够稳定供应氢气,压力波动较小,并在不同启动条件下具备良好的运行特性。水下长时间运行过程中,燃料电池功率输出保持稳定,未出现明显衰减,舱内温湿度变化幅度较小,体现出较好的热湿平衡能力和环境适应性。研究结果表明,研究成果验证了铝水制氢技术的工程可行性和实用价值,该系统可为深远海复杂环境中的能源供给提供支持,并为深海装备的能源优化设计提供参考。

    Abstract:

    To address the challenge of insufficient endurance in energy systems under deep-sea conditions, this study designed, analyzed, and validated a hydrogen production system based on aluminum-water reactions, integrated with a fuel cell system to meet the demands of complex underwater environments. The reactor features a grid-like reinforced framework and lightweight, high-strength materials, which enhance structural rigidity and optimize dynamic water intake control and heat dissipation. Experimental tests, including cold start, hot start, pressure stability, and underwater integrated operation, were conducted on a simulated deep-sea closed environment platform. The results demonstrate that the system can stably supply hydrogen with minimal pressure fluctuations and exhibits excellent performance under different startup conditions. During extended underwater operations, the fuel cell output remained stable without noticeable degradation, and the variations in cabin temperature and humidity were minor, reflecting the system's effective thermal and humidity balance and environmental adaptability. These findings confirm the engineering feasibility and practical value of aluminum-water hydrogen production technology. This system provides robust energy supply support for complex deep-sea environments and offers valuable insights for optimizing energy systems in deep-sea equipment design.

    参考文献
    [1] 汪品先. 发展深海科技的前景与陷阱[J]. 科技导报, 2021, 39(3): 71-79.
    [2] 张景全, 侯闯. 全球深海基础设施治理的现状, 挑战与中国路径[J]. 太平洋学报, 2024, 32(4): 74-88.
    [3] 陈韶阳, 郑清予. 美国海洋思维剖析及对中国海洋强国建设的启示[J]. 太平洋学报, 2021, 29(4): 53-65.
    [4] 吴园涛, 段晓男, 沈刚, 等. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413.
    [5] CHICHE A, LINDBERGH G, STENIUS I, 等. A Strategy for Sizing and Optimizing the Energy System on Long-Range AUVs[J]. Ieee Journal of Oceanic Engineering, 2021, 46(4): 1132-1143.
    [6] WU Y, ZHAO Y, LANG S, 等. Development of Autonomous Underwater Vehicles Technology[J]. Chinese Journal of Engineering Science, 2020, 22(6): 26.
    [7] MEYER A P. Development of proton exchange membrane fuel cells for underwater applications[C]//Proceedings of OCEANS ’93. 1993: II/146-II/151 vol.2.
    [8] BAGHERIAN FARAHABADI H, REZAEI FIROZJAEE M, PAHNABI A, 等. Fuel cell power system conceptual design for unmanned underwater vehicle[J/OL]. Iranian Journal of Hydrogen and Fuel Cell, 2023(Online First)[2024-07-28]. https://doi.org/10.22104/ijhfc.2022.5884.1248.
    [9] KWON L, KANG J G, BAIK K D, 等. Advancement and applications of PEMFC energy systems for large-class unmanned underwater vehicles: A review[J]. International Journal of Hydrogen Energy, 2024, 79: 277-294.
    [10] VAN HOECKE L, LAFFINEUR L, CAMPE R, 等. Challenges in the use of hydrogen for maritime applications[J]. Energy Environmental Science, 2021, 14(2): 815-843.
    [11] USMAN M R. Hydrogen storage methods: Review and current status[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112743.
    [12] XIU X, LIU Y, MA S, 等. Study on energy storage configurations and energy management strategy of an underwater hydrogen hybrid system[J]. Journal of Energy Storage, 2024, 104: 114403.
    [13] FAYE O, SZPUNAR J, EDUOK U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13771-13802.
    [14] LI J C, XU H, ZHOU K, 等. A review on the research progress and application of compressed hydrogen in the marine hydrogen fuel cell power system[J]. Heliyon, 2024, 10(3): e25304.
    [15] AL GHAFRI S Zs, MUNRO S, CARDELLA U, 等. Hydrogen liquefaction: A review of the fundamental physics, engineering practice and future opportunities[J]. Energy Environmental Science, 2022, 15(7): 2690-2731.
    [16] SEZGIN B, DEVRIM Y, OZTURK T, 等. Hydrogen energy systems for underwater applications[J/OL]. International Journal of Hydrogen Energy, 2022[2022-04-19]. https://www.sciencedirect.com/science/article/pii/S0360319922003962.
    [17] BOLT A, DINCER I, AGELIN-CHAAB M. A Review of Unique Aluminum-Water Based Hydrogen Production Options[J]. Energy Fuels, 2021, 35(2): 1024-1040.
    [18] ZHUK A Z, SHKOLNIKOV E I, BORODINA T I, 等. Aluminium – Water hydrogen generator for domestic and mobile application[J]. Applied Energy, 2023, 334: 120693.
    [19] BOLT A, DINCER I, AGELIN-CHAAB M. A Review of Unique Aluminum–Water Based Hydrogen Production Options[J]. Energy Fuels, 2021, 35(2): 1024-1040.
    [20] AN Q, HU H, LI N, 等. Effects of bi composition on microstructure and al-water reactivity of al-rich alloys with low-in[J]. International Journal of Hydrogen Energy, 2018, 43(24): 10887-10895.
    [21] CHEN J, XU F, SUN L, 等. Effect of doped Ni-Bi-B alloy on hydrogen generation performance of Al-InCl3[J]. Journal of Energy Chemistry, 2019, 39: 268-274.
    [22] ZHAO C, XU F, SUN L, 等. A novel AlBiOCl composite for hydrogen generation from water[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6655-6662.
    [23] CHEN X, WANG C, LIU Y, 等. Popcorn-like aluminum-based powders for instant low-temperature water vapor hydrogen generation[J]. Materials Today Energy, 2021, 19: 100602.
    [24] LIU D, GAO Q, AN Q, 等. Experimental Study on Zn-Doped Al-Rich Alloys for Fast on-Board Hydrogen Production[J]. Crystals, 2020, 10: 167.
    [25] HURTUBISE D W, KLOSTERMAN D A, MORGAN A B. Development and demonstration of a deployable apparatus for generating hydrogen from the hydrolysis of aluminum via sodium hydroxide[J]. International Journal of Hydrogen Energy, 2018, 43(14): 6777-6788.
    [26] WANG H, WANG Z, SHI Z, 等. Facile hydrogen production from al-water reaction promoted by choline hydroxide[J]. Energy, 2017, 131: 98-105.
    [27] 赵阳, 叶康, 孙汉乔, 等. 铝基复合材料制氢性能与安全性研究[J]. 汽车工程, 2022, 44(5): 730-735.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-08
  • 最后修改日期:2025-01-24
  • 录用日期:2025-02-19
文章二维码