舰载四摆臂式扰流片气动力数值仿真研究
作者:
作者单位:

中国船舶集团有限公司第七一〇研究所


Numerical Simulation on Aerodynamic Force of Shipborne Four Swing Arm Type Spoiler
Author:
Affiliation:

1.No.710 R&2.D Institute, CSSC

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • | | | |
  • 文章评论
    摘要:

    为满足工程应用中四摆臂式扰流片气动力分析和飞行力学建模的需求,本文针对四摆臂式扰流片分别开展了主推力和侧向力调节气动力数值仿真,获得了扰流片矢量力控制能力。首先,提出了四摆臂式扰流片主推力和侧向力调节策略。其次,搭建了四摆臂式扰流片数值仿真模型。最后,通过数值仿真手段分别研究了单扰流片气动力、扰流片推力调节和侧向力调节能力。数值仿真结果表明:四摆臂式扰流片主推力调节能力超过30%;当主推角小于32°,主推力跟主推角线性关系较好,扰流片间的气动干扰小。四摆臂式扰流片侧向力调节能力强,能产生最大53.5N的侧向力,且侧向力跟侧向力差动角线性关系强,极利于弹体姿态控制。

    Abstract:

    This paper performs numerical simulations on the main thrust and lateral force adjustments of four swing arm spoilers, thereby determining their vector force control capabilities, which meet the need of aerodynamic analysis and flight mechanics modeling in engineering. The paper begins by presenting strategies for adjusting the main thrust and lateral forces of the four swing arm spoilers. Secondly, a numerical simulation model for four swing arm spoilers is established. Finally, the paper examines the aerodynamic forces of a single spoiler, along with the thrust and lateral force adjustment capabilities of the four swing arm spoilers system through simulation. The simulation results indicate that the main thrust adjustment capability of the spoilers surpasses 30%. When the main thrust angle is below 32°, there is a strong linear relationship between the main thrust and the main thrust angle, with minimal aerodynamic interference between the spoilers. Furthermore, the four swing arm spoilers demonstrate a strong ability to adjust lateral forces, capable of generating a maximum lateral force of 53.5N. Additionally, the lateral force shows a strong linear relationship with the differential angle of the lateral force, which greatly aids in missile attitude control.

    参考文献
    [1] Lopera J, Ng T T, Patel M P, et al. Forebody Geometry Effects on the Flowfield of a Blunt-Nose Projectile at High Alpha[J]. Journal of Aircraft, 2007, 44(6):1906-1922.
    [2] Jean-Francois Guery, I-Shih Chang, Toru Shimada. Solid Propulsion for Space Applications: An Updated Roadmap[J]. Acta Astronautica, 2010, 66( 1-2) , 201-219.
    [3] Thanigaiarasu S, Jayaprakash S, et al.Influence of tab geometry and its orientation on under-expanded sonic jets[J]. Aerospace Engineering, 2007, 331-336.
    [4] 韩文超, 王政时, 骆晓臣. 扰流片式推力矢量气动力数值仿真研究[J]. 计算机仿真, 2012, 029(7):84-87.
    [5] 韩文超.扰流片式推力矢量控制系统研究[D]. 南京:南京理工大学,2011.
    [6] 丛戎飞,吴军强,张长丰,等.扰流片式推力矢量喷管气动特性数值模拟研究[J]. 空气动力学学报,2019 , 37(2):234-241.
    [7] 童悦,郑庆,等. 一种多扰流片装置的推力矢量特性数值研究[J]. 固体火箭技术,2021,44(3):337-342.
    [8] 崔业兵, 陈雄, 周长省,等. 扰流片推力矢量控制系统动态特性研究[J]. 推进技术, 2013, 34(8):1030-1034.
    [9] 许奇,权晓波,魏海鹏,等.水下推力矢量控制技术研究现状及进展[J].兵器装备工程学报,2022,43(01):27-34.
    [10] Antonio Filippone. Inverted Jet Spoilers for Aerodynamic Control[J]. Journal of Aircraft,2009,46( 4).
    [11] 林冰涛,余小波,等. 固体火箭发动机用W8Cu钨渗铜喉衬抗烧蚀性研究[J]. 装备工程学报,2020,41(12):214-219.
    [12] 王晓辉,刘志勇,褚学森. 扰流片式推力矢量控制的气动力学研究[J]. 船舶力学,2019,23(7):791-801.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:5
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-11-18
  • 最后修改日期:2024-12-02
  • 录用日期:2024-12-19
文章二维码