空化器构型对绕射弹空化流动特性的影响研究
作者单位:

西北机电工程研究所


Research on the influence of cavitator configuration on the cavitation flow characteristics around projectiles
Author:
Affiliation:

Northwest Institute of Mechanical and Electrical Engineering

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    为研究射弹头型优化问题,通过选取倒梯台型、圆球型及圆柱型的空化器构型,对不同空化器构型的空化流场进行数值模拟。结果表明,同一空化数下,倒梯台型空化器产生的空穴尺度最大,更易于空化的生成,圆柱型空化器次之,半球形空化器不易于产生空化。湍动能与空泡的生成息息相关,倒梯台型空化器附近的湍动能最大,其空泡尺度也最大。倒梯台型空化器比例对绕射弹高速空化流动影响显著,随着空化器直径比例加大,空泡厚度加大,但亦导致航行阻力系数明显增大。综合来看,倒梯台型空化器更易于空化的生成,可以为超空泡射弹优选设计方案提供支撑。

    Abstract:

    In order to optimize the projectile head shape, numerical simulations were conducted on the cavitation flow field of different cavitator configurations, including inverted trapezium, hemispherical, and cylindrical cavitator configurations.The results indicate that under the same cavitation number, the inverted trapezium cavitator produces the largest cavitation profile and is more prone to cavitation generation. Cylindrical cavitator come in second place, while hemispherical cavitator are less prone to cavitation. The turbulent kinetic energy is closely related to the generation of cavities, and the turbulent kinetic energy is highest near the inverted trapezium cavitator, so its bubble size is also the largest. The diameter ratio between the smaller and larger bottom surfaces of the inverted trapezoidal cavitator has a significant impact on the high-speed cavitation flow around the projectile. As this ratio increases, the thickness of the cavity increases, but it also leads to a significant increase in the n

    参考文献
    [1] 季斌,程怀玉,黄彪,等. 空化水动力学非定常特性研究进展及展望[J]. 力学进展,2019, 49(00): 428-479.
    JI B, CHEN H Y, HUANG B, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019, 49(00): 428-479. (in Chinese)
    [3] [2]黄彪,王国玉,胡常莉,等. 绕回转体初生空化流场特性的实验及数值研究[J]. 工程力学,2012, 29(6): 320-331+325.
    HUANG B, WANG G Y, HU C L, et al. Experimental study on fluctuating hydrodynamics around axisymmetric bodies[J]. Engineering Mechanics, 2012, 29(6): 320-331+325. (in Chinese)
    [5] [3]Arakeri V H. Viscous Effects on the Position of Cavitation Separation from Smooth Bodies[J]. Journal of Fluid Mechanics, 1975, 68(4): 779-799.
    [6] [4]Kawanami Y, Kato H, Yamauchi H, et al. Mechanism and Control of Cloud Cavitation[J]. Journal of Fluids Engineering, 1997, 119(4):788-794.
    [7] [5]LMDGREN H, JOHMON C A. Cavitation inception on head forms ITTC comparative experiments[C] // Proceedings of the 11th International Towing Tank Conference. Tokoy, Japan: International Towing Tank Conference Association, 1966: 219-232.
    [8] [6]JOHNSSON C A. Cavitation inception on head forms further test[C] // Proceedings of the 12th International Towing Tank Conference. Rome, Italy: International Towing Tank Conference Association, 1969: 381-392.
    [9] [7]HU C L, WANG G Y, WANG X D, et al. Experimental incvestigation of inception cavitating flows around axisymmetric bodies with different hedaforms[J]. Journal of Mechanical Science and Technology, 2016, 30(7): 3193-3201.
    [10] [8]胡常莉,王国玉,陈广豪. 绕平头回转体空穴的发展及脱落特性研究[J]. 兵工学报, 2014, 354(1): 88-95.
    HU C L, WANG G Y, CHEN G H. Study of characteristics of unsteady cavitating flow aronud an axisymmetric blunt body[J]. Acta Armamentarii, 2014, 35(1): 88-95. (in Chinese)
    [12] [9]王复峰, 王国玉, 黄彪, 等. 通气空化多相流动特性的实验与数值研究[J]. 工程力学, 2016(09): 220-226+234.
    WANG F F, WANG G Y, HUANG B, et al. Experimental and numerical study on characteristics of ventilatend cavitation multiphase flow[J]. Engineering Mechanics, 2016(09): 220-226+234. (in Chinese)
    [14] [10]刘影, 段忠平, 刘涛涛, 等. 绕空化器回转体通气空泡流态特征实验研究[J]. 哈尔滨工程大学学报. 2021(01): 74-81.
    LIU Y, DUAN Z P, LIU T T, et al. Experiment investigation of the ventilated cavitating flow around the axisymmetric body of a disk cavitator[J]. Journal of Harbin Engineering University, 2021(01): 74-81. (in Chinese)
    [16] [11]王瑞, 党建军, 姚忠. 不同外形空化器绕回转体超空化特性试验研究[J]. 水下无人系统学报, 2019,27(1): 20-24.
    WANG R, DANG J J, YAO, Z. Experimental study on supercavitation characteristics around axisymmetric body with different shape cavitators[J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 20-24. (in Chinese)
    [18] [12]傅琳琅, 胡常莉. 粗糙带对绕平头回转体初生空化流动特性的影响研究[J]. 船舶力学, 2022, 26(8): 1120-1128.
    FU L L, HU C L. Influence of rough band on characteristics of inception cavitating flow around an axisymmetric body with blunt headform[J]. Journal of Ship Mechanics, 2022, 26(8): 1120-1128. (in Chinese)
    [20] [13]张木, 谭俊杰, 易文俊, 等. 空化器参数对超空泡初生位置影响大涡模拟[J]. 弹道学报, 2016, 28(1): 87-91.
    ZHANG M, TAN J J, YI W J, et al. Large eddy simulation analysis on effect of cavitator parameter on supercavity primary position[J]. Journal of Ballistics, 2016, 28(1): 87-91. (in Chinese)
    [22] [14]胡俊, 马亮, 候夏伊. 不同头型回转体空化现象的数值模拟研究[J]. 装备工程学报, 2022, 43(1): 176-181.
    HUN J, MA L, HOU X. Numerical simulation study on cavitating body of revolution with different head types[J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 176-181. (in Chinese)
    [24] [15]邓飞, 熊伟, 周江磊, 等. 双圆盘空化器射弹通气通气超空泡形态特性实验研究[J]. 西北工业大学学报, 2019, 37(1): 93-99.
    DENG F, XIONG W, ZHOU J L, et al. Experimental study on morphological characteristics of ventilated supercavity of double disc cavitator projectile[J]. Journal of Northwestern Polytechnical University, 2019,37(1): 93-99. (in Chinese)
    [26] [16]李达钦. 高速航行体可压缩超空泡流动数值计算[D]. 北京理工大学, 2016.
    LI D Q. Numerical simulation of the high-speed compressible supercavitating flows around a symmetrical body[D]. Beijing Institute of Technology, 2016. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:5
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-31
  • 最后修改日期:2024-11-18
  • 录用日期:2024-12-05
文章二维码