甚低频声源用新型电磁驱动结构的建模与分析
作者:
作者单位:

中国船舶集团有限公司第七一〇研究所


Investigation and Modeling of Innovative Electromagnetic Actuation Mechanisms for Ultra-Low Frequency Acoustic Emission
Author:
Affiliation:

1.No. 710 R&2.D Institute,CSSC

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    针对适装于无人反水雷平台的扫雷声源要求结构紧凑、输出位移大、甚低频辐射能力强的特点,提出一种可模块化组装的新型电磁驱动结构。该驱动结构具有结构简单、输入-输出线性化、驱动力电流比高等优点。在分析该新型电磁驱动结构运行原理的基础上,建立了其等效磁路模型,进一步根据单自由度带阻尼受迫振动模型建立了新型电磁驱动结构的动力学模型。为验证等效磁路模型及动力学模型的正确性,建立了该驱动结构的有限元仿真模型,将仿真所得的电磁力及输出位移与基于等效磁路的仿真模型结果进行对比,有限元分析结果和磁路分析结果较好吻合,证明了所建模型的准确性。进一步根据声辐射模型计算得到声源在30~200Hz激励下输出声源级,计算结果表明,所提出的新型电磁驱动结构驱动的甚低频声源在70Hz谐振频率下,输出声源级可达185dB,在30~200Hz频带内输出声源及均大于145dB,能够满足甚低频大功率输出的要求,且通过模块化组装能够实现高声源级输出,可为新型扫雷声源的设计提供理论支撑。

    Abstract:

    In response to the needs of unmanned anti-mine platforms, we have proposed a novel electromagnetic drive structure designed to achieve a compact structure, large displacement output, and powerful very low frequency (VLF) radiation capabilities. This structure is distinguished by its simple design, linearization of input and output, and a high driving force-to-current ratio. Based on the operating principles of the electromagnetic drive structure, we have established an equivalent magnetic circuit model and further developed a dynamic model. The accuracy of these models was verified through a finite element simulation model, with simulation results matching theoretical predictions. Under excitation from 30 to 200 Hz, the sound source level of the new electromagnetic drive structure exceeds 145 dB, reaching 185 dB at the resonant frequency of 70 Hz. This meets the requirements for high-power VLF output and, through modular assembly, achieves a high sound source level output, providing theoretical support for the design of new mine-sweeping sound sources.

    参考文献
    [1] 王久法,吴乔,高频等.国外无人反水雷特点及关键技术分析[J].数字海洋与水下攻防,2020,3(5):382-386.
    [2] 倪华,赵治平,官红等.我国反水雷支援舰能力建设探讨[J].数字海洋与水下攻防,2019,2(2):1-6.
    [3] 赵治平,官红,艾艳辉等.无人化时代反水雷装备体系构想[J].水雷战与舰船防护,2018,1(2):1-6,29.
    [4] 杨明智,王文彬,吴萌,等.大功率超低频电磁换能器国内外发展现状及关键技术分析[J].数字海洋与水下攻防,2024,7(04):426-435.
    [5] 卢苇.大功率甚低频水下声源研究[D].哈尔滨工程大学, 2011.
    [6] 卢苇,蓝宇.电磁式大功率水下超低频声源研究[J].哈尔滨工程大学学报,2011,32(7):877-883.
    [7] 雷蕾,余海涛,费腾等.一种动磁式直线振荡电机的设计与分析[J].微电机,2017,50(2):1-4,10.
    [8] 周瑜.超低频声源研究[D].哈尔滨工程大学,2008.
    [9] 张振铎.超低频大功率电磁式换能器研究[D].哈尔滨工程大学,2019.
    [10] 李赟.大功率超低频电磁式换能器研究[D].湖南大学,2021.
    [11] Боголюбов Б Н, Кирсанов А В, Мухин Е Н, et al. СОЗДАНИЕ МОЩНЫХ НИЗКОЧАСТОТНЫХ (500 ВТ 80 ГЦ) ЭЛЕКТРОМАГНИТНЫХ ГИДРОАКУСТИЧЕСКИХ ИЗЛУЧАТЕЛЕЙ, КОРРЕКЦИЯ РЕЗОНАНСНОЙ ЧАСТОТЫ ПУТЕМ МЕХАНИЧЕСКОЙ ОБРАБОТКИ УПРУГИХ ЭЛЕМЕНТОВ[C]//Труды всероссийской конференции" Прикладные технологии гидроакустики и гидрофизики". Федеральное государственное бюджетное учреждение науки Институт океанологии им. ПП Ширшова Российской академии наук, 2016 (13): 442-443.
    [12] 杨郑.低功耗低频电磁式水下声源关键技术研究[D].浙江大学,2023.
    [13] 吴昌聚,沈润杰.水下振动动态特性研究[J],机械设计.2003,20(3):35-39.
    [14] 何文.宽屏大尺寸水下振动台关键技术的研究[D].浙江大学.2006.
    [15] 滕舵,杨虎,李道江.水声换能器基础[M].西北工业大学出版社,2016.
    [16] 杜功焕, 朱哲民. 声学基础-第2版[M].南京:南京大学出版社, 2001.
    [17] 卢苇,蓝宇.电磁式大功率水下超低频声源研究[J].哈尔滨工程大学学报,2011,32(7):877-883.
    [18] 汪柏松.大功率低频电磁膜式换能器研究[D].湖南大学,2022.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:7
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-31
  • 最后修改日期:2024-11-22
  • 录用日期:2024-12-05
文章二维码