深海环境中铝合金材质设备的应力腐蚀行为有限元模拟研究
作者:
作者单位:

1.中国船舶重工集团有限公司第七一〇研究所;2.中国海洋大学 材料科学与工程学院


Finite element simulation study of stress corrosion behavior of aluminum alloy equipment in deep-sea environments
Author:
Affiliation:

1.710 Research Institute, China Shipbuilding Industry Corporation;2.School of Materials Science and Engineering, Ocean University of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    深海开发具有极高的经济战略意义,而深海高压、高盐度的极端环境中极易引起金属设备的应力腐蚀问题。本项目以揭示两种铝合金材料设备在深海环境中的力学载荷与腐蚀之间的关系以及具体的腐蚀机理为目标,使用实验测试配合有限元计算的方法对设备模型中不同材质的各个部位分别进行了固体力学及电化学腐蚀耦合的数值模拟仿真分析。计算结果表明在0.5 km深度海域中,7049铝合金材质设备表面最大腐蚀速率仅为0.013 mm/yr,这一数值略低于6A02铝合金材质设备表面0.016 mm/yr的最大腐蚀速率,证明7049铝合金材料更适应深海服役环境。

    Abstract:

    Deep-sea development holds significant economic and strategic value. However, the extreme conditions of high pressure and high salinity in deep-sea environments often lead to stress corrosion issues in metal equipment. This project aims to elucidate the relationship between mechanical loads and corrosion in two types of aluminum alloy materials used in deep-sea equipment, as well as the specific mechanisms of corrosion. By combining experimental testing with finite element analysis (FEA), we conducted numerical simulation analyses of solid mechanics and electrochemical corrosion coupling for various parts of the equipment model made from different materials. The calculation results indicate that, at a depth of 0.5 km, the maximum corrosion rate on the surface of equipment made from 7049 aluminum alloy is only 0.0163 mm/yr, which is slightly lower than the maximum corrosion rate of 0.0182 mm/yr observed on the surface of equipment made from 6A02 aluminum alloy. This demonstrates that 7049 aluminum alloy is more suitable for service in deep-sea environments.

    参考文献
    [1] 郭为民, 樊洪, 丁康康, 等. 深海环境腐蚀试验技术及研究进展 [J]. 装备环境工程, 2024, 21(05): 24-33.
    [2] 郭为民, 孙明先, 邱日, 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29(03): 313-317.
    [3] Z. X. Yang, B. Kan, J. X. Li, et al. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment [J]. International Journal of Hydrogen Energy, 2017, 42(44): 27446-27457.
    [4] H. Liu, X. Bai, Z. Li, et al. Electrochemical Evaluation of Stress Corrosion Cracking Susceptibility of Ti-6Al-3Nb-2Zr-1Mo Alloy Welded Joint in Simulated Deep-Sea Environment [J]. Materials (Basel), 2022, 15(9). 3201.
    [5] A. Chojnacka, J. Kawalko, H. Koscielny, et al. Corrosion anisotropy of titanium deformed by the hydrostatic extrusion [J]. Applied Surface Science, 2017, 426: 987-994.
    [6] 段体岗, 李祯, 彭文山, 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43(02): 352-358.
    [7] B. Zhou, L. Yang, S. B. Yang, et al. Stress corrosion behavior of 6082 aluminum alloy [J]. Materials and Corrosion, 2020, 71(7): 1194-1205.
    [8] J. Chen, X. Zhang, L. Zou, et al. Effect of precipitate state on the stress corrosion behavior of 7050 aluminum alloy [J]. Materials Characterization, 2016, 114: 1-8.
    [9] 彭文山, 段体岗, 马力, 等. ZAlSi7Mg铝合金在深海环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43(03): 516-524.
    [10] S. Cao, S. Zhu, C. V. Samuel Lim, et al. The mechanism of aqueous stress-corrosion cracking of α + β titanium alloys [J]. Corrosion Science, 2017, 125: 29-39.
    [11] S. Chen, L. Qiu, S. Sun, et al. Research Progress on Corrosion of Equipment and Materials in Deep-Sea Environment [J]. Advances in Civil Engineering, 2021, 2021: 1-12.
    [12] 吴瑜, 张朝骅, 佟佳洋, 等. 深海耐压结构微裂纹损伤识别与定量评估方法[J]. 舰船科学技术, 2024, 46(10): 47-52.
    [13] L. Shen, H. Chen, L. D. Xu, et al. Stress corrosion cracking and corrosion fatigue cracking behavior of A7N01P‐T4 aluminum alloy [J]. Materials and Corrosion, 2017, 69(2): 207-214.
    [14] 彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展[J]. 材料开发与应用, 2010, 25(01): 59-62.
    [15] B. M. Sch?nbauer, S. E. Stanzl-Tschegg, A. Perlega, et al. Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios [J]. International Journal of Fatigue, 2014, 65: 33-43.
    [16] J. Han, S. Ne?i?, Y. Yang, et al. Spontaneous passivation observations during scale formation on mild steel in CO2 brines [J]. Electrochimica Acta, 2011, 56(15): 5396-5404.
    [17] 路永新, 李霄, 荆洪阳, 等. 碳钢焊接接头腐蚀的有限元模拟 [J]. 焊接学报, 2018, 39(05): 10-14.
    [18] 翁硕, 孟超, 朱江峰, 等. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究 [J].中国腐蚀与防护学报, 2024, 44(04): 1029-1037.
    [19] 董凯辉, 宋影伟, 蔡勇, 等. 模拟海洋大气环境下钛铝连接件的电偶腐蚀研究[J]. 表面技术, 2024, 53(09): 11-21.
    [20] H. He, W. Tian, J. Li, et al. Failure Analysis and Finite Element Simulation on Service Conditions of SUS304 Stainless Steel [J]. Journal of Materials Engineering and Performance, 2021, 30(8): 5987-5999.
    [21] 朱浩云, 乔文靖, 杨帆, 等. 强腐作用下钢板组合梁栓钉退化机理的研究与有限元分析[J]. 公路, 2022, 67(01): 109-117.
    [22] Y. Jasra, S. Singhal, R. Upman, et al. Finite element simulation of stress corrosion cracking in austenitic stainless steel using modified Lemaitre damage model [J]. Materials Today: Proceedings, 2020, 26: 2314-2322.
    [23] F. Xie, W. Zhu, D. Sun, et al. Finite element simulations of corrosion defect with different inclination angles in submarine pipelines using multi-physics field coupling and deformation geometry [J]. International Journal of Pressure Vessels and Piping, 2022, 200: 104836.
    [24] M. Feyzi, K. Fallahnezhad, M. Taylor, et al. A review on the finite element simulation of fretting wear and corrosion in the taper junction of hip replacement implants [J]. Comput Biol Med, 2021, 130: 104196.
    [25] S. Harzheim, M. Hofmann, T. Wallmersperger. Comparison of two mesh-moving techniques for finite element simulations of galvanic corrosion [J]. Acta Mechanica, 2022, 233(11): 4427-4439.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:3
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-14
  • 最后修改日期:2024-10-30
  • 录用日期:2024-12-10
文章二维码