基于Diffusion Model的水声数据增强方法
作者:
作者单位:

1.中国船舶集团有限公司第七一〇研究所;2.中国舰船研究院


Underwater Acoustic Data Enhancement Method Based on Diffusion Model
Author:
Affiliation:

1.No.710 R&2.D Institute, CSSC;3.China Ship Research Academy

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | | | |
  • 文章评论
    摘要:

    深度学习需要大量数据对网络模型进行训练才能达到良好的识别效果,而水声数据的数量较少且难以获取。为了解决这一问题,采用了一种基于扩散模型的水声数据增强方法,使用海上试验采集的水声数据进行训练,构建数据生成模型,生成高质量的数据样本,扩充训练数据集。实验结果表明,使用AlexNet作为分类模型进行训练时,该方法相较于传统数据增强方法能够将识别错误率降低约30%,验证了方法的有效性。

    Abstract:

    Deep learning requires a large amount of data to train network models in order to achieve good recognition performance, while underwater acoustic data is scarce and difficult to obtain. To solve this problem, a diffusion model-based underwater acoustic data augmentation method was adopted, which uses underwater acoustic data collected from offshore experiments for training, constructs a data generation model, generates high-quality data samples, and expands the training dataset. The experimental results show that when using AlexNet as a classification model for training, this method can reduce the recognition error rate by about 30% compared to traditional data augmentation methods, verifying the effectiveness of the method.

    参考文献
    [1] Irfan M, Jiangbin Z, Ali S, et al. DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification[J]. Expert Systems with Applications, 2021, 183: 115270.
    [2] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of big data, 2019, 6(1): 1-48.
    [3] Yue Z, Wang J, Loy C C. Resshift: Efficient diffusion model for image super-resolution by residual shifting[J]. Advances in Neural Information Processing Systems, 2024, 36.
    [4] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[J]. Advances in neural information processing systems, 2020, 33: 6840-6851.
    [5] Abayomi-Alli O O, Dama?evi?ius R, Qazi A, et al. Data augmentation and deep learning methods in sound classification: A systematic review[J]. Electronics, 2022, 11(22): 3795.
    [6] Deutsch Y . A polynomial-time method to compute all Nash equilibria solutions of a general two-person inspection game[J]. European Journal of Operational Research,2020,288(3).
    [7] Guanghao J ,Fan L ,Hao W , et al. Deep learning-based framework for expansion, recognition and classification of underwater acoustic signal[J]. Journal of Experimental & Theoretical Artificial Intelligence,2020,32(2).
    [8] Gao Y, Chen Y, Wang F, et al. Recognition method for underwater acoustic target based on DCGAN and DenseNet[C]//2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC). IEEE, 2020: 215-221.
    [9] 薛灵芝,曾向阳,杨爽. 基于生成对抗网络的水声目标识别算法 [J]. 兵工学报, 2021, 42 (11): 2444-2452.
    [10] 张明洪,罗昕炜. 基于生成对抗网络数据增强的水声目标识别[C]// 中国声学学会水声学分会,山东声学学会,中国造船工程学会船舶仪器仪表学术委员会. 中国声学学会水声学分会2021~2022年学术会议论文集. 东南大学水声信号处理教育部重点实验室;, 2022: 3. DOI:10.26914/c.cnkihy.2022.062089.
    [11] Dhariwal P, Nichol A. Diffusion models beat gans on image synthesis[J]. Advances in neural information processing systems, 2021, 34: 8780-8794.
    [12] 杨光锴.基于扩散模型的指纹图像生成方法[J].河北省科学院学报,2023,40(01):13-18+66.DOI:10.16191/j.cnki.hbkx.2023.01.009.
    [13] Yang L, Zhang Z, Song Y, et al. Diffusion models: A comprehensive survey of methods and applications[J]. ACM Computing Surveys, 2023, 56(4): 1-39.
    [14] Nichol A Q, Dhariwal P. Improved denoising diffusion probabilistic models[C]//International conference on machine learning. PMLR, 2021: 8162-8171.
    [15] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer International Publishing, 2015: 234-241.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:5
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-28
  • 最后修改日期:2024-10-29
  • 录用日期:2024-12-10
文章二维码