基于高斯函数拟合的离子迁移谱反卷积算法
作者:
作者单位:

中船重工安谱(湖北)仪器有限公司


Deconvolution algorithm for ion migration spectra based on Gaussian function fitting
Affiliation:

Alphapec Instrument

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [6]
  • | | | |
  • 文章评论
    摘要:

    离子迁移谱(Ion mobility spectroscopy, IMS)常用于一些气体或是易挥发性物质的痕量检测,在海洋环保、工业过程控制和国防安全方面有广泛的应用。其区分物质的关键在于不同物质离子迁移谱谱图保留时间的差异。然而由于实际样品中组分复杂,导致不同物质的谱峰交叠在一起难以区分。因此本文提出了一种基于高斯函数拟合的反卷积算法,利用高斯函数逐步分解光谱,通过降低每一级高斯函数的标准差使谱峰更加尖锐,展宽变窄,以此实现谱峰的分离,提高光谱分辨率。

    Abstract:

    Ion mobility spectroscopy (IMS) is commonly used for trace detection of gases or volatile substances, and has wide applications in marine environmental protection, industrial process control, and national defense security. The key to distinguishing substances lies in the difference in retention time of ion migration spectra of different substances. However, due to the complex composition of actual samples, the overlapping peaks of different substances make it difficult to distinguish. Therefore, this article proposes a deconvolution algorithm based on Gaussian function fitting, which gradually decomposes the spectrum using Gaussian function. By reducing the standard deviation of each level of Gaussian function, the spectral peaks become sharper and wider, thus achieving peak separation and improving spectral resolution.

    参考文献
    [1] 埃森门(美).离子迁移谱[M].国防工业出版社,2010.
    [2] 方标,黄高明,高俊.多通道盲反卷积算法综述[J].信号处理,2013,29(006).
    [3] Rau U, Cornwell T J. A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry[J].Astronomy Astrophysics, 2012, 532.
    [4] Joho M, Schniter P. Frequency domain realization of a multichannel blind deconvolution algorithm based on the natural gradient[J]. 2003.
    [5] Fiori, S. Fast Fixed-Point Neural Blind-Deconvolution Algorithm[J]. IEEE Transactions on Neural Networks, 2004.
    [6] Fiori S. A contribution to (neuromorphic) blind deconvolution by flexible approximated Bayesian estimation[J]. Signal Processing, 2001, 81( 10).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:3
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-27
  • 最后修改日期:2024-10-26
  • 录用日期:2024-11-04
文章二维码