面向水下动态对接的UUV目标感知系统架构研究
作者:
作者单位:

上海交通大学航空航天学院

基金项目:

***项目“项目名称”(项目编号)。


An Architecture of Target Perception System for Underwater Dynamic Docking with Unmanned Underwater Vehicle
Author:
Affiliation:

Shanghai Jiao Tong University,School of Aeronautics And Astronautics

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    无人水下航行器(Unmanned Underwater Vehicle ,UUV)因其所具有的高机动性、高智能化、高可操纵性等特点,正逐渐成为各国水下攻防领域的研究热点。而由于UUV所携带能源有限,需要与水上平台或者母船进行对接充能,因此开展水下自主对接领域的研究十分必要。以往的研究多聚焦于UUV的运动规划与控制算法或是对接过程中UUV与坞站的相互影响,鲜有对水下感知体系的系统性研究。本文以水下动态对接任务为研究背景,调研了国内外机构的相关任务的导引技术方案,对多波束声呐、激光雷达和水下电磁传感器进行了原理与特性分析,并对多波束成像声呐做了仿真实验,提出了一个面向水下动态对接的协同感知导引系统架构及方案。该架构能够根据水下动态对接任务各阶段的需求与相关传感器的特性进行灵活调整传感器的工作优先级,以保证整个对接任务阶段都能为回收平台与UUV平台提供有效的对接信息。

    Abstract:

    UUV (Unmanned Underwater Vehicle) characterized by its high maneuverability, intelligence, and operability, is increasingly becoming a focal point of research in the underwater offensive and defensive fields for various countries. Given the limited energy resources carried by UUV, the need for energy replenishment through docking with surface platforms or motherships necessitates the exploration of underwater autonomous docking research. Previous studies have predominantly concentrated on the motion planning and control algorithms of UUV or the mutual influence between UUV and docking station during the docking process, with a dearth of systematic research on underwater perception systems. This paper, set against the backdrop of underwater dynamic docking missions, reviews the guidance technology schemes for related tasks by institutions worldwide, analyzes the principles and characteristics of multi-beam sonar, laser radar, and underwater electromagnetic sensors, and conducts simulation experiments on multi-beam imaging sonar. A collaborative perception guidance system architecture and scheme for underwater dynamic docking are proposed. This architecture is capable of flexibly adjusting the operational priority of sensors based on the requirements of each phase of the underwater dynamic docking mission and the characteristics of the relevant sensors, ensuring that effective docking information is provided for both the recovery platform and the UUV platform throughout the entire docking mission phase.

    参考文献
    许光. UUV水下对接技术发展现状与关键技术[J]. 声学与电子工程,2019(4):1-5,9.
    高杰, 田云飞, 许莹, 等.主成分分析法在UUV集群反水雷搜索中的应用[J].数字海洋与水下攻防,2022,第5卷(1): 6-10
    袁学庆, 刁家宇, 李卫民, 等. AUV水下对接的发展与应用现状[J].舰船科学技术,2023,45(5):1-8. DOI:10.3404/j.issn.1672-7649.2023.05.001.
    孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报,2019,40( 1) : 1-11.
    Zheping Yan, Man Wang, Jian Xu, Integrated guidance and control strategy for homing of unmanned underwater vehicles, Journal of the Franklin Institute, Volume 356, Issue 7, 2019, Pages 3831-3848, ISSN 0016-0032, https://doi.org/10.1016/j.jfranklin.2018.11.042.
    Thuyen, N.A., Anh, H.P.H. (2023). A New Docking Method for Autonomous Underwater Vehicle Using Hybrid Lyapunov-Sliding Mode Control. In: Huang, YP., Wang, WJ., Quoc, H.A., Le, HG., Quach, HN. (eds) Computational Intelligence Methods for Green Technology and Sustainable Development. GTSD 2022. Lecture Notes in Networks and Systems, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-031-19694-2_27
    Li Z, Liu W, Li L, Guo L, Zhang W. Modeling and adaptive controlling of cable-drogue docking system for autonomous underwater vehicles. Int J Adapt Control Signal Process. 2022;36(2):354-372. https://doi.org/10.1002/acs.3261
    T. C. Austin, R. Stokey, C. von Alt, R. Arthur and R. Goldsborough, ""RATS", a Relative Acoustic Tracking System developed for deep ocean navigation,"SOceans ''97. MTS/IEEE Conference Proceedings, Halifax, NS, Canada, 1997, pp. 535-540 vol.1, doi: 10.1109/OCEANS.1997.634422.
    R. Stokey et al., "A docking system for REMUS, an autonomous underwater vehicle," Oceans ''97. MTS/IEEE Conference Proceedings, Halifax, NS, Canada, 1997, pp. 1132-1136 vol.2, doi: 10.1109/OCEANS.1997.624151.
    Kimball PW, Clark EB, Scully M, et al. The ARTEMIS under-ice AUV docking system. J Field Robotics. 2018;35:299–308. https://doi.org/10.1002/rob.21740.
    T. Fukasawa, T. Noguchi, T. Kawasaki and M. Baino, ""MARINE BIRD", a new experimental AUV with underwater docking and recharging system,"SOceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492), San Diego, CA, USA, 2003, pp. 2195-2200 Vol.4, doi: 10.1109/OCEANS.2003.178242.
    Y. Sato, T. Maki, T. Matsuda and T. Sakamaki, "Detailed 3D seafloor imaging of Kagoshima Bay by AUV Tri-TON2," 2015 IEEE Underwater Technology (UT), Chennai, India, 2015, pp. 1-6.
    Y. Sato, T. Maki, K. Masuda, T. Matsuda and T. Sakamaki, "Autonomous docking of hovering type AUV to seafloor charging station based on acoustic and visual sensing," 2017 IEEE Underwater Technology (UT), Busan, Korea (South), 2017, pp. 1-6, doi: 10.1109/UT.2017.7890282.
    H. KondoSet al., "Passive acoustic and optical guidance for underwater vehicles,"S2012 Oceans - Yeosu, Yeosu, Korea (South), 2012, pp. 1-6, doi: 10.1109/OCEANS-Yeosu.2012.6263572.
    Jin-Yeong Park, Bong-huan Jun, Pan-mook Lee, Junho Oh, Experiments on vision guided docking of an autonomous underwater vehicle using one camera, Ocean Engineering, Volume 36, Issue 1, 2009, Pages 48-61.
    Ye Li, Yanqing Jiang, Jian Cao, Bo Wang, Yiming Li, AUV docking experiments based on vision positioning using two cameras, Ocean Engineering, Volume 110, Part A, 2015, Pages 163-173.
    李泽宇, 刘卫东, 李乐, 等 基于RBF网络Q学习的AUV路径跟踪控制方法. 西北工业大学学报, 2021, 39(3): 477-483.
    Tao Zhang, Dejun Li, Canjun Yang, Study on impact process of AUV underwater docking with a cone-shaped dock, Ocean Engineering, Volume 130, 2017, Pages 176-187, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2016.12.002.
    Lihong Wu, Yiping Li, Shaojuan Su, Peng Yan, Yu Qin, Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents, Ocean Engineering, Volume 85, 2014, Pages 110-126, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2014.04.022.
    ZHAI Jingsheng, ZOU Bo, XU Jian, GAO Sunpei. Tests for performances of a high-resolution underwater imaging sonar[J]. Journal of Vibration and Shock, 2018, 37(2): 223-227.
    Hongjuan Li, Fanghao Huang, Zheng Chen, Virtual-reality-based online simulator design with a virtual simulation system for the docking of unmanned underwater vehicle, Ocean Engineering, Volume 266, Part 4, 2022, 112780, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2022.112780.
    Dinh Quang Huy, Nicholas Sadjoli, Abu Bakr Azam, Basman Elhadidi, Yiyu Cai, Gerald Seet, Object perception in underwater environments: a survey on sensors and sensing methodologies, Ocean Engineering, Volume 267, 2023, 113202, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2022.113202.
    M. D. Aykin and S. Negahdaripour, "Forward-look 2-D sonar image formation and 3-D reconstruction," 2013 OCEANS - San Diego, San Diego, CA, USA, 2013, pp. 1-10, doi: 10.23919/OCEANS.2013.6741270.
    Zhao ZJ, Tan YG, Liu P, et al. Research on underwater long-range target intelligent identification system based on laser range-gated imaging technology [J]. Journal of Integration Technology, 2023, 12(2): 39-52.
    D. Park, J. Jung, K. Kwak, W. K. Chung and J. Kim, "3D underwater localization using EM waves attenuation for UUV docking," 2017 IEEE Underwater Technology (UT), Busan, Korea (South), 2017, pp. 1-4, doi: 10.1109/UT.2017.7890278.
    D. A. Duecker, T. Johannink, E. Kreuzer, V. Rausch and E. Solowjow, "An Integrated Approach to Navigation and Control in Micro Underwater Robotics using Radio-Frequency Localization," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 6846-6852, doi: 10.1109/ICRA.2019.8794088.
    Woen-Sug Choi, Derek R. Olson, Duane Davis, Mabel Zhang, Andy Racson, Brian Bingham, Michael McCarrin, Carson Vogt, and Jessica Herman, “Physics-based modelling and simulation of Multibeam Echosounder perception for Autonomous Underwater Manipulation,”SFrontiers in Robotics and AI, 2021. doi:S10.3389/frobt.2021.706646
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:5
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-12
  • 最后修改日期:2024-11-01
  • 录用日期:2024-12-10
文章二维码