基于连续帧与注意力机制的水下小目标自主检测算法
DOI:
CSTR:
作者:
作者单位:

中国船舶重工集团有限公司第七一〇研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Underwater Small Target Detection Based on Continuous Frame and Attention Mechanism
Author:
Affiliation:

China Shipbuilding Industry Corporation 701 Research Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对声呐对水下小目标探测时目标特征少,常规目标检测算法性能不佳的问题,提出了一种以YOLOv5目标识别算法为基础的连续帧识别改进算法。该算法通过连续帧数据提取模块以及轻量的通道空间注意力模块,提取声呐连续帧信息,提升了YOLOv5算法的识别能力。湖上前视声呐时序数据集算法验证试验表明,在几乎不增加推理时间的前提下,改进算法的平均检测精度比YOLOv5算法提升了13.7%。该改进算法预期可在水下小目标自主检测任务中应用。

    Abstract:

    In order to solve the problem of less target characteristics and poor performance of conventional target detection algorithm for underwater small target detection by Sonar, a continuous frame recognition modification based on? YOLOv5 is proposed. The algorithm through a lightweight channel and space attention module to extract sonar continuous frame information which improved the ability of YOLOv5. The lake experimental results based on the forward-looking sonar time series dataset show that the accuracy of the algorithm is improved by 13.7% and the reasoning time is basically unchanged. The improved algorithm is expected to be applied to the autonomous detection of underwater small targets.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-08
  • 最后修改日期:2024-09-09
  • 录用日期:2024-09-10
  • 在线发布日期:
  • 出版日期:
文章二维码