基于Openmax的水下声呐图像开放集分类
DOI:
CSTR:
作者:
作者单位:

1.南开大学人工智能学院;2.北京大学 软件工程国家工程研究中心;3.博雅工道(北京)机器人科技有限公司;4.北京大学 工学院

作者简介:

通讯作者:

中图分类号:

基金项目:

面向信息生态复杂性的群体博弈与协作动力学研究


Open-set Classification Of Sonar Images Based On Openmax
Author:
Affiliation:

1.College of Artificial Intelligence,Nankai University;2.National Engineering Research Center of Software Engineering,Peking University;3.Boya Gongdao Beijing Robotics Technology Co,Ltd;4.College of Engineering,Peking University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在人工智能技术快速发展的背景下,开放集识别作为一个新兴的问题领域受到广泛研究。本研究对FLSMDD声呐数据集进行了开放集识别任务的设计,旨在评估Openmax算法处理未知类别样本的能力,并与传统Softmax及其阈值化变体进行比较。研究通过结合残差网络和迁移学习技术,测试了不同算法在分类准确性和鲁棒性方面的表现。结果显示,Openmax算法在整体准确率上比Softmax提高5%,宏观F1参数提升了7%,加权F1宏观参数提高了6%,这表明其在处理未知类别的适应性和鲁棒性方面具有显著优势。未来研究将探索优化算法设计,以进一步提高识别精度和处理效率。本研究为开放集识别技术的发展提供了有力证据,也为深度学习在更广泛的分类问题中的应用奠定了理论和实验基础。

    Abstract:

    With the rapid development of artificial intelligence technology,open set recognition has been widely studied as an emerging field of classification problems. This study designed an open set recognition task for the FLSMDD sonar dataset, aiming to evaluate the ability of the Openmax algorithm to handle unknown class samples,then we compare it with traditional Softmax and its thresholded variants. By combining residual networks and transfer learning techniques, the study tested the performance of different algorithms in terms of classification accuracy and robustness. The results show that the Openmax algorithm has an overall accuracy improvement of 5% compared to Softmax, a macro-F1 improvement of 7%, and a weighted Macro-F1 increase of 6%, indicating that it has significant advantages in adaptability and robustness in handling unknown categories. Future research will explore optimizing algorithm to further improve recognition accuracy and processing efficiency. This study provides strong evidence for the development of open set recognition technology and lays a theoretical and experimental foundation for the application of deep learning in a wider range of classification problems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-07
  • 最后修改日期:2024-06-05
  • 录用日期:2024-07-01
  • 在线发布日期:
  • 出版日期:
文章二维码