基于异质多维集成的微型三分量磁通门传感器
作者:
作者单位:

1.上海交通大学;2.上海大学机电工程与自动化学院微电子研发中心;3.自然资源部第二海洋研究所海底地球科学重点实验室

基金项目:

国家重大科研仪器研制专项项目(42127807-03),国家重点研发计划项目(2023YFC2811100, 2023YFC2811104),上海交通大学“深蓝计划”基金重点项目(SL2022ZD202),国家自然科学基金(52107239),上海交通大学医工交叉研究基金(YG2023QNA40),上海市科委专业技术服务平台资助项目(19DZ2291103),上海高校青年东方学者岗位计划(QD2020009)


A Micro Three Component Fluxgate Sensor Based on Heterogeneous Multidimensional Integration
Author:
Affiliation:

1.Shanghai Jiao Tong University;2.Shanghai University;3.Key Laboratory of Submarine Geosciences

Fund Project:

National Major Scientific Instruments and Equipments Development Project of National Natural Science Foundation of China(42127807-03), National Key R&D Program of China (2023YFC2811100, 2023YFC2811104), The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (grant no. SL2022ZD202), The National Natural Science Foundation of China(52107239), Interdisciplinary Program of Shanghai Jiao Tong University (YG2023QNA40), Professional technical service platform of Shanghai Committee of Science and Technology (19DZ2291103), the Program for Young Eastern Scholar at Shanghai Institutions of Higher Education (QD2020009)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | | | |
  • 文章评论
    摘要:

    采用异质多维集成技术,开发了一种T型微型三分量磁通门传感器。该传感器集成了基于微机电系统(MEMS)技术制造的具有钴基非晶带芯和螺线管励磁检测线圈的单轴螺线管磁通门芯片,通过PCB基板的正交连接以及单轴磁通门芯片与基板的键合,实现了三分量的全集成。测试结果显示,传感器在X、Y、Z方向上的灵敏度分别为1068V/T、1072V/T和1069V/T,噪声功率谱密度分别为0.069nT√Hz@1Hz、0.136nT√Hz@1Hz和0.102nT√Hz@1Hz,时间漂移峰值分别为7.5nT、23.5nT和17.8nT,线性响应范围为0-100μT。正交度测试表明,该传感器X-Y、X-Z、Y-Z轴之间的正交偏差分别为0.5°、1°和0.5°,可以满足对地磁场三分量的有效测量。采用更精密的基板加工技术和更精准的键合对准符号图案可以进一步提高异质集成三分量磁通门传感器的正交度。这项研究为微型高精度磁场传感应用提供了重要的技术支持。

    Abstract:

    A T-shaped micro triaxial fluxgate sensor has been developed using heterogeneous multidimensional integration technology. The sensor integrates a uniaxial solenoid fluxgate chip fabricated using Micro-Electro-Mechanical Systems (MEMS) technology, which features a cobalt-based amorphous band core and an excitation detection coil. By orthogonally connecting through a PCB substrate and bonding the uniaxial fluxgate chip to the substrate, a fully integrated triaxial configuration was achieved. Test results show that the sensor"s sensitivities are 1068 V/T for the X axis, 1072 V/T for the Y axis, and 1069 V/T for the Z axis. The corresponding noise power spectral densities are 0.069 nT√Hz, 0.136 nT√Hz, and 0.102 nT√Hz at 1 Hz for each respective axis. Time drift peaks were recorded at 7.5 nT for X, 23.5 nT for Y, and 17.8 nT for Z, with a linear response range from 0 to 100 μT. Orthogonality tests revealed deviations of 0.5° between X and Y, 1° between X and Z, and 0.5° between Y and Z, meeting the standards for precise measurement of the geomagnetic field"s three components. Further improvements in the orthogonality of the heterogeneously integrated triaxial magnetic sensor can be achieved through more precise substrate machining and more accurate bonding alignment symbols. This research provides significant technical support for applications requiring small, high-precision magnetic field sensors.

    参考文献
    樊业东. 基于ANSYS的磁通门传感器仿真设计[J]. 信息通信, 2019, (06):22-3.
    ZHANG K. A novel geomagnetic satellite constellation: Science and applications[J]. Earth and Planetary Physics, 2023, 7(1):4-21.
    NOSE M, KAWANO T, AOYAMA H. Application of Magneto-Impedance (MI) Sensor to Geomagnetic Field Measurements[J]. Journal of Geophysical Research-Space Physics,2022,127(10):e2022JA030809
    BAUMJOHANN W, MATSUOKA A, NARITA Y, et al. The BepiColombo-Mio Magnetometer en Route to Mercury[J]. Space Science Reviews, 2020, 216(8):1-33
    DU A M, ZHANG Y, LI H Y, et al. The Chinese Mars ROVER Fluxgate Magnetometers[J]. Space Science Reviews, 2020, 216(8):1-15
    BANFIELD D, RODRIGUEZ-MANFREDI J A, RUSSELL C T, et al. InSight Auxiliary Payload Sensor Suite (APSS)[J]. Space Science Reviews, 2019, 215(1):1-33.
    TOPAL U, CAN H, CELIK O M, et al. Design of Fluxgate Sensors for Different Applications from Geology to Medicine[J]. Journal of Superconductivity and Novel Magnetism, 2019, 32(4):839-44.
    KOSHEV N, BUTORINA A, SKIDCHENKO E, et al. Evolution of MEG: A first MEG-feasible fluxgate magnetometer[J]. Human Brain Mapping, 2021, 42(15):4844-56.
    NGUYEN A T, To T L, Tran T H D. Heart-rate monitoring device based on fluxgate sensors[C]//2019 International Conference on System Science and Engineering (ICSSE). IEEE, 2019:437-440.
    YALAZ M, TEPLYUK A, DEUSCHL G, et al. Dipole Fit Localization of the Deep Brain Stimulation Electrode Using 3D Magnetic Field Measurements[J]. IEEE Sensors Journal, 2020, 20(16):9550-7.
    杨志强,吴江妙,宣仲义.基于MEMS技术的磁通门传感器制备研究[J].机械制造,2008,46(4):43-46
    LIAKOPOULOS T M, AHN C H. A micro-fluxgate magnetic sensor using micromachined planar solenoid coils1Paper presented as part of the SSAW-98 Workshop.1[J]. Sensors and Actuators A: Physical, 1999, 77(1):66-72.
    LEI J, LEI C, WANG T, et al. A MEMS-fluxgate-based sensing system for the detection of Dynabeads[J]. Journal of Micromechanics and Microengineering, 2013, 23(9):095005.
    WANG Z, SHEN Y, LEI C, et al. Highly-Sensitive MEMS Micro-Fluxgate Magnetometer[J]. IEEE Electron Device Letters, 2022, 43(8):1327-30.
    DYER T, GRIFFIN P F, RIIS E. Single-board low-noise fluxgate magnetometer[J]. Journal of Applied Physics, 2024, 135(3):034501
    GOLEMAN K, SASADA I. A triaxial orthogonal fluxgate magnetometer made of a single magnetic wire with three U-Shaped branches[J]. IEEE Transactions on Magnetics, 2007, 43(6):2379-81.
    KUBIK J, VCELAK J, O’Donnell T, et al. Triaxial fluxgate sensor with electroplated core[J]. Sensors and Actuators A: Physical, 2009, 152(2):139-145.
    LU, C.C. and J. HUANG. 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide[J]. Sensors (Basel), 2015, 15(6):14727-44.
    GAO Y, LI Z, LI Y, et al. The design of high precision three axis fluxgate magnetometer[C]//2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2017:249-253.
    GAN X, DENG J. Multi-chip assembly based on SIP technology[C]//3rd Workshop on Advanced Research and Technology in Industry (WARTIA 2017). Atlantis Press, 2017:443-447.
    李扬. 基于SIP技术的微系统[M]. 电子工业出版社, 2021.
    MA Q, DAI Y, WU T, et al. A multidimensional integrated micro three-component fluxgate sensor based on microelectromechanical system technology[J]. Sensors and Actuators A: Physical, 2024, 371:115315.
    LEI C, LEI J, YANG Z, et al. Improved micro fluxgate sensor with double-layer Fe-based amorphous core[J]. Microsystem technologies, 2013, 19:167-172.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:23
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-30
  • 最后修改日期:2024-06-24
  • 录用日期:2024-07-05
文章二维码