基于小波包变换特征向量提取的隐蔽水声通信性能评价方法研究
作者:
作者单位:

厦门大学 海洋与地球学院,福建 厦门 361002

作者简介:

武正义(2001-),男,硕士生,主要从事水声通信研究。

中图分类号:

TN929.3

基金项目:

中央高校基本科研业务费专项资金资助“水下隐蔽通信评价研究 ”(20720210078)


Research on Performance Evaluation Method of Covert Underwater Acoustic Communication Based on Feature Vector Extraction with Wavelet Packet Transform
Author:
Affiliation:

College of Ocean and Earth Science,Xiamen University,Xiamen 361002 ,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对水声通信系统的隐蔽性缺乏客观、有效的评价手段,提出一种基于小波包变换提取信号特征向量并比较特征向量相似度的信号隐蔽性评价算法。为了区别截获信号和环境噪声,考虑从能量分布特征的角度,提取截获信号的特征参数。所提算法利用小波包变换具有更高的时频分辨率、自适应选择频带等特点,获取信号的小波包能量占比、小波包能量熵、小波包尺度熵,采用上述 3 个特征参数组成特征向量和利用余弦相似度算法判别信号隐蔽性。仿真实验和海试结果表明,所提方法得到的信号隐蔽性能基本符合实际信号隐蔽性能随信噪比变化规律,为隐蔽水声通信系统评估设计和水声对抗性能评级提供有效参考。

    Abstract:

    To address the lack of objective and effective evaluation methods for the covert performance of underwater acoustic communication systems,an approach that relies on wavelet packet transform is proposed in this paper. The proposed method extracts signal feature vectors and utilizes a similarity algorithm to assess the covert capability of signals. The proposed method capitalizes on the superior time-frequency resolution and adaptive-frequency-band selection of the wavelet packet transform to differentiate intercepted signals from environmental noise. It extracts feature parameters of intercepted signals,specifically the wavelet packet energy percentage,wavelet packet energy entropy,and wavelet packet scale entropy. These parameters are used to construct the feature vectors,and the cosine similarity algorithm is applied to determine the covert performance of signals. Simulation experiments and sea trials demonstrate that the concealment performance yielded by the proposed method aligns closely with the actual changes in covert performance concerning signal-to-noise ratio. As a result,this method offers an effective reference for evaluating and designing covert underwater acoustic communication systems and grading the acoustic countermeasure performance.

    参考文献
    [1] 柳文明,韩树平,李厚全,等.基于截获因子的直序扩频水声通信隐蔽性能分析[J].南京大学学报:自然科学,2017,53(4):654-660.
    [2] 徐穆洵.噪声通信[J].军事通信技术,1995(3):1-6.
    [3] BAI Y G,ZHAO D S,WU G Q.The simulation of direct spread spectrum system based on transmitted reference signal[J].International Journal of Computer Science Issues,2013,10(1):784-814.
    [4] 艾宇慧,周瑜丽,岳沛,等.m 序列扩频谱水声通信研究[J].哈尔滨工程大学学报,2000(2):15-18.
    [5] 孙卫华,王子勇,郭小宇,等.直接序列扩频水声通信技术研究[J].舰船科学技术,2016,38(7):124-127.
    [6] LIU S Z,MA T L,GANG Q,et al.Bionic communication by dolphin whistle with continuous-phase based on MSK modulation[C]//2016 IEEE International Conference on Signal Processing,Communications and Computing(ICSPCC).Hong Kong:IEEE,2016.
    [7] JIANG J J,WANG X Q,DUAN F J,et al.A sonar-embedded disguised communication strategy by combining sonar waveforms and whale call pulses for underwater sensor platforms[J].Applied Acoustics,2019,145(8):255-266.
    [8] DILLARD R A.Detectability of spread-spectrum signals[J].IEEE Transactions on Aerospace and Electronic Systems,1979,15(4):526-537.
    [9] 同鸣,郝重阳,刘晓军.基于听觉掩蔽特性的扩频信息隐藏方法[J].计算机工程,2006(10):137-139.
    [10] DIAMANT R,LAMPE L,GAMROTH E.Bounds for low probability of detection for underwater acoustic communication[J].IEEE Journal of Oceanic Engineering,2017,42(1):143-155.
    [11] HUANG D,CUI S,LI X Q.Wavelet packet analysis of blasting vibration signal of mountain tunnel[J].Soil Dynamics and Earthquake Engineering,2019,117:72-80.
    [12] LI Y X,NING F Y,JIANG X R,et al.Feature extraction of ship radiation signals based on wavelet packet decomposition and energy entropy[J].Mathematical Problems in Engineering,2022,2022:8092706.
    [13] LIU Z G,HAN Z W,ZHANG Y,et al.Multiwavelet packet entropy and its application in transmission line fault recognition and classification[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(11):2043-2052.
    [14] 艾佳琪,左毅,刘君霞,等.基于余弦相似度的动态语音特征提取算法[J].计算机应用研究,2020,37(S2):147-149.
    [15] GEORGE K K,KUMAR C S,SIVADAS S,et al.Analysis of cosine distance features for speaker verification[J].Pattern Recognition Letters,2018,112:285-289.
    [16] 王旭.基于小波变换的通信信号特征提取与调制识别[D].贵州:贵州大学,2009.
    [17] GAO R X,YAN R Q.Wavelets:Theory and Applications for Manufacturing[M].Boston:Springer,2011.
    [18] 刘晓健,崔乃刚,刘雪峰,等.基于海洋环境噪声水下探测研究进展[J].数字海洋与水下攻防,2022,5(6):518-523.
    [19] GUL S,ZAIDI S S H,KHAN R,et al.Underwater acoustic channel modeling using BELLHOP ray tracing method[C]//14th International Bhurban Conference on Applied Sciences and Technology(IBCAST).Islamabad:IEEE,2017.
    相似文献
    引证文献
引用本文

武正义,周跃海,童峰,等.基于小波包变换特征向量提取的隐蔽水声通信性能评价方法研究[J].数字海洋与水下攻防,2024,7(3):301-309

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-20
  • 在线发布日期: 2024-07-02
文章二维码