基于机器学习的声子晶体结构声隐身设计
作者:
作者单位:

1.武汉理工大学 船海与能源动力工程学院,湖北 武汉 430063 ;2.工业和信息化部产业发展促进中心,北京 100846

作者简介:

齐文超(1999-),男,硕士生,主要从事结构振动噪声及控制技术研究。

中图分类号:

TB34

基金项目:

国家自然科学基金面上项目“螺旋桨激励下水下双层组合壳耦合系统的振动与声辐射机理分析及实验研究”(51779201)


Acoustic Stealth Design of Phononic Crystal Strcutures Based on Machine Learning
Author:
Affiliation:

1.School of Naval Architecture,Ocean and Energy Power Engineering,Wuhan University of Technology,Wuhan 430063 ,China ;2.Industry Development and Promotion Center,Ministry of Industry and Information Technology,Beijing 100846 ,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对声呐导流罩中低频段振动控制以提高其全频段声隐身性能问题,提出了一种基于条件自编码器的声子晶体结构逆向设计方法,在目标频段逆向设计出的具有带隙的声子晶体结构可作为夹芯结构芯层, 为声呐导流罩声振特性治理工作提供新思路。首先随机生成大量声子晶体周期单元,并提出 2 种策略扩充在目标频段内具有带隙的样本数量。针对有限元软件批量计算声子晶体结构带隙效率较低的问题,训练了卷积神经网络用于识别声子晶体是否具有带隙。最后,将声子晶体结构以及带隙分布作为训练集训练条件自编码器。结果显示:卷积神经网络对结构的带隙具有很好的识别效果,识别准确率可以达到 89%;条件自编码器能学习到人工周期结构的轴对称结构,生成的人工周期结构与原结构仅相差几个像素,且生成结构的带隙与原结构带隙误差小于 1%,说明该方法可以应用于声子晶体结构的逆向设计。

    Abstract:

    A reverse design of a phononic crystal structure based on conditional autoencoder is proposed in response to the low-frequency vibration control issue in the sonar dome. The designed phononic crystal structure,featuring a band gap in the target frequency band,can be used as the sandwich structure's core layer,providing a new idea for the vibroacoustic characteristics management of the sonar dome. Firstly,many phononic crystal periodic units are randomly generated,and two strategies are proposed to expand the number of samples with band gaps in the target frequency band. To solve the problem of low efficiency of batch calculation of the phononic crystal structure band gap by Finite Element Software,a convolutional neural network is trained to identify whether the phononic crystal has band gaps. Finally,the phononic crystal structure and band gap distribution are used as the training condition autoencoder. The results show that the convolutional neural network has a high recognition accuracy of the band gap of the structure,which is up to 89%. The conditional autoencoder can learn the axisymmetric structure of the artificial periodic structure. The generated artificial periodic structure is only a few pixels different from the original structure. The band gap error between the generated structure and the original structure is less than 1%,indicating that this method can be applied to the reverse design of the phononic crystal structure.

    参考文献
    [1] SIGALAS M M,Economou E N.Elastic and acoustic wave band structure[J].Journal of Sound and Vibration,1992,158(2):377-382.
    [2] KUSHWAHA M S,HALEVI P,DOBRZYNSKI L,et al.Acoustic band structure of periodic elastic composites[J].Physical Review Letters,1993,71(13):2022.
    [3] MARTíNEZ-SALA R,SANCHO J,SáNCHEZ J V,et al.Sound attenuation by sculpture[J].Nature,1995,378:241.
    [4] 陈新华,张晨,陈猛,等.分形凹角蜂窝结构声子晶体振动带隙特性[J].人工晶体学报,2022,51(8):1343-1352,1360.
    [5] 金星,张振华.幂指数棱台声子晶体对薄板振动弯曲波的调控特性研究[J].振动工程学报,2023,36(6):1687-1694.
    [6] 魏祎珩,樊洁平,邱克鹏.基于ISIGHT的二维手性声子晶体带隙最优设计[J].人工晶体学报,2023,52(1):56-64.
    [7] BONNECAZE R T,RODIN G J,SIGMUND O,et al.Systematic design of phononic band-gap materials and structures by topology optimization[J].Philosophical Transactions of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,2003,361(1806):1001-1019.
    [8] GAZONAS G A,WEILE D S,WILDMAN R,et al.Genetic algorithm optimization of phononic bandgap structures[J].International Journal of Solids and Structures,2006,43(18-19):5851-5866.
    [9] BILAL O R,HUSSEIN M I.Ultrawide phononic band gap for combined in-plane and out-of-plane waves[J].Physical Review E,2011,84(6):065701.
    [10] DIAZ A R,HADDOW A G,MA L.Design of band-gap grid structures[J].Structural and Multidisciplinary Optimization,2005,29:418-431.
    [11] LUO C C,NING S N,LIU Z L,et al.Interactive inverse design of layered phononic crystals based on reinforcement learning[J].Extreme Mechanics Letters,2020,36:100651.
    [12] LIU C X,YU G L.Predicting the dispersion relations of one-dimensional phononic crystals by neural networks[J].Scientific Reports,2019,9(1):15322.
    [13] FINOL D,LU Y,MAHADEVAN V,et al.Deep convolutional neural networks for eigenvalue problems in mechanics[J].International Journal for Numerical Methods in Engineering,2019,118(5):258-275.
    [14] MIAO X B,DONG H W,WANG Y S.Deep learning of dispersion engineering in twodimensional phononic crystals[J].Engineering Optimization,2021,55(1):125-139.
    [15] ZHANG H J,WANG Y,ZHAO H G,et al.Accelerated topological design of metaporous materials of broadband sound absorption performance by generative adversarial networks[J].Materials and Design,2021,207(17):109855.
    [16] DAI M N,JIANG Y,YANG F,et al.SLMGAN:single-layer metasurface design with symmetrical free-form patterns using generative adversarial networks[J].Applied Soft Computing,2022,130:109646.
    [17] LIU C X,YU G L,ZHAO G Y.Neural networks for inverse design of phononic crystals[J].AIP Advances,2019,9(8):085223.
    [18] LI X,NING S W,LIU Z L,et al.Designing phononic crystal with anticipated band gap through a deep learning based data-driven method[J].Computer Methods in Applied Mechanics and Engineering,2020,361:112737.
    [19] 曹蕾蕾,朱旺,武建华,等.基于人工神经网络的声子晶体逆向设计[J].力学学报,2021,53(7):1992-1998.
    相似文献
    引证文献
引用本文

齐文超,马伟佳,王献忠,等.基于机器学习的声子晶体结构声隐身设计[J].数字海洋与水下攻防,2024,7(3):268-275

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-28
  • 在线发布日期: 2024-07-02
文章二维码