基于极限学习自编码器的水声信号目标识别方法
作者:
作者简介:

曹琳(1985-),女,硕士,工程师,主要从事水声信号处理、大数据分析挖掘研究。

中图分类号:

TB556


A Target Recognition Method for Underwater Acoustic Signals Based on Extreme Learning Autoencoder
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    传统的机器学习方法在特征提取时容易受到主观经验的影响,导致对水声信号目标的识别准确率不高。而一般深度学习算法模型较复杂,通常具有训练耗时、计算复杂度高等缺点。极限学习自编码器具有很强的非线性处理能力,适合针对具有非线性特点的水声信号目标的识别,而且模型具有学习速度快,泛化能力强等显著优势。将极限学习自编码器算法应用于水声信号目标识别中,并与卷积神经网络、自编码器和极限学习机识别方法进行对比,结果表明:提出的方法对水声信号目标识别的准确率最优,且训练时间较短。

    Abstract:

    Traditional machine learning methods are easily influenced by subjective experience during feature extraction,which leads to low recognition accuracy of underwater acoustic targets. However,deep learning algorithm models are relatively complex,which usually have the disadvantages of time-consuming training and high computational complexity. Extreme learning autoencoder has strong non-linear processing ability,which is suitable for recognition of underwater acoustic signals with nonlinear characteristics. Moreover,the model has significant advantages such as fast learning speed and strong generalization ability. In this paper,the extreme learning autoencoder algorithm is applied to underwater acoustic signal recognition,and is compared with convolutional neural networks,autoencoders,and extreme learning machine recognition methods. The results show that the proposed method has the best accuracy in target recognition of underwater acoustic signals and needs shorter training time.

    参考文献
    相似文献
    引证文献
引用本文

曹琳.基于极限学习自编码器的水声信号目标识别方法[J].数字海洋与水下攻防,2024,7(2):225-230

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-08
  • 在线发布日期: 2024-04-23
文章二维码