大功率超低频膜结构电磁声源振动特性研究
作者:
作者简介:

杨明智(1992-),男,博士,工程师,主要从事大功率超低频电声换能器多场建模研究。

中图分类号:

TM57

基金项目:

国家自然科学基金项目“考虑多场效应的大功率超低频超磁致伸缩换能器电声能量高效高可靠变换方法研究”(52377010)


A Study on Vibration Characteristics of High-power Ultra-low Frequency Membrane-type Electromagnetic Acoustic Sources
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [2]
  • | | |
  • 文章评论
    摘要:

    膜结构电磁式声源具有体积位移大、超低频声场可控、适装性佳等显著优势,在扫雷声源方面具有广阔的应用前景。辐射膜是声源核心振动部件,研究辐射膜的振动特性对于电磁声源的设计及应用具有重要意义。研究了一种膜结构电磁声源振动特性的解析方法。首先,建立真空中电磁声源圆环膜自由振动的解析模型。其次,采用分离变量法求解得到真空中圆环膜自由振动的固有频率和振型,通过与文献数据对比及有限元仿真验证了理论解的正确性。然后,分析了不同边界条件下和圆环膜半径的变化对膜在真空中的振动特性的影响。最后,考虑声源实际水下工况粘性液体负载与内部填充压力的影响,得到了电磁声源实际工况中不同尺寸圆环膜低频强迫振动的幅频特性与声源振动体积位移。所提方法可较准确地反映实际工况下电磁声源振动特性与声辐射能力,可为大功率电磁声源的设计和结构优化提供重要参考。

    Abstract:

    Membrane-type electromagnetic acoustic sources have the advantages of large volume displacement,controllable ultra-low frequency acoustic field and good adaptability,so they have broad application prospect in the field of minesweeping acoustic source. Radiation membrane is the core vibration component of an acoustic source. It is of great significance to study the vibration characteristics of radiation membrane for the design and application of electromagnetic acoustic sources. In this paper,an analytical method for the vibration characteristics of an electromagnetic acoustic source with membrane structure is studied. Firstly,the analytical model of the free vibration of the circular membrane of the electromagnetic acoustic source in vacuum is established. Secondly,the natural frequencies and modes of free vibration of the circular membrane in vacuum are obtained using the method of separation of variables. The correctness of theoretical solution is verified by comparing the calculated natural frequencies with the data in the references as well as finite element simulation. Then,the influence of different boundary conditions and the change of the radius of the circular membrane on the vibration characteristics of the membrane in vacuum is analyzed. Finally,considering the influence of viscous liquid loads and internal filling pressure,the amplitude-frequency characteristics and volume-displacement of the low frequency forced vibration of the circular membrane with different sizes in actual working conditions of the electromagnetic acoustic source are obtained. The method presented in this paper can accurately reflect the vibration characteristics and acoustic radiation capacity of the electromagnetic acoustic source under actual working conditions,and can provide an important reference for the design and structural optimization of high-power electromagnetic acoustic source.

    参考文献
    [1] 纪伟,刘忠乐.水下活塞式声源声辐射研究[J].水雷战与舰船防护,2017,25(1):7-10.
    [2] 邓涛,沈谊伟.某型扫雷具分系统码头环境下调试措施的研究[J].数字海洋与水下攻防,2022,5(3):230-238.
    [3] 任斌.国外浅水反水雷的发展探究[J].数字海洋与水下攻防,2021,4(6):525-528.
    [4] SHERMAN C H,BUTLER J L,BROWN D A.Transducers and arrays for underwater sound[J].Journal of the Acoustical Society of America,2008,124(3):1385.
    [5] HOWE B M,MIKSIS-OLDS J,REHM E,et al.Observing the oceans acoustically[J].Frontiers in Marine Science,2019(6):426.
    [6] TENGHAMN R.An electrical marine vibrator with a flextensional shell[J].Exploration Geophysics,2006,37(4):286-291.
    [7] 谢晋兴,张永亮,江敏,等.基于高功率电磁脉冲的深海脉冲声源仿真和实验研究[J].集成技术,2021,10(2):98-108.
    [8] 杨郑.低功耗低频电磁式水下声源关键技术研究[D].杭州:浙江大学,2022.
    [9] 沐永生,姬培锋,蔡野锋,等.水下大功率电磁式脉冲声源设计与研究[J].声学学报,2015,40(2):254-262
    [10] HOWE B M,ANDERSON S G,BAGGEROER A,et al.Instrumentation for the acoustic thermometry of ocean climate(ATOC)prototype Pacific Ocean network[C]//Oceans 1995 MTS/IEEE.San Diego:IEEE,1995.
    [11] 卢苇,蓝宇,张振铎.双活塞大功率电磁式超低频水下声源[J].声学技术,2019,38(2):508-510.
    [12] 卢苇.大功率甚低频水下声源研究[D].哈尔滨:哈尔滨工程大学,2013.
    [13] 卢苇,蓝宇.电磁式大功率水下超低频声源研究[J].哈尔滨工程大学学报,2011,32(7):877-883.
    [14] 沐永生,姬培锋,蔡野锋,等.水下大功率电磁式脉冲声源设计与研究[J].声学学报,2015,40(2):254-262.
    [15] 张振铎.超低频大功率电磁式换能器研究[D].哈尔滨:哈尔滨工程大学,2019.
    [16] 余志祥,赵雷.张拉膜结构自振特性研究[J].西南交通大学学报,2004,39(6):734-739.
    [17] 潘钧俊,顾明.考虑几何非线性的方形张拉膜的等效一阶频率[J].振动与冲击,2007,26(4):18-20.
    [18] 蔡学军,王琳,王卓,等.关于薄膜振动产生李萨如图形的研究[J].物理实验,2006,26(6):36-38.
    [19] 吴福光,蔡承武,徐兆.振动理论[M].北京:高等教育出版社,1987.
    [20] 铁摩辛柯 S,杨 D H,小韦孚 W.工程中的振动问题 [M].胡人礼,译.北京:人民铁道出版社,1978.
    [21] 林文静,陈树辉,李森.圆形薄膜自由振动的理论解 [J].振动与冲击,2009,28(5):84-86.
    [22] 焉奇龙.电磁式大功率声波换能器关键技术妍究[D].成都:电子科技大学,2014.
    [23] 张高廷,曹云东,刘炜.簧片式继电器固有振动特性研究[J].电工技术学报,2020,35(2):292-299.
    [24] SHERMAN C H,BUTLER J L.Transducers and Arrays for Underwater Sound[M].New York:Springer,2007.
    [25] 吴胜男,唐任远,韩雪岩,等.磁致伸缩引起的非晶合金铁心振动解析计算及影响因素[J].电工技术学报,2016,31(20):73-82.
    [26] 罗吉,罗亮生.圆环膜自由振动的数学模型及其若干声学特性[J].数学杂志,2010,30(1):168-172.
    [27] 林文静,陈树辉,张启明.圆环形薄膜自由振动的理论解[J].中山大学学报:自然科学版,2008,47(S2):103-108.
    [28] SKUDRZYK E.The Foundations of Acoustics:Basic Mathematics and Basic Acoustics[M].New York:Springer,1971.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨明智,胡敏,汪柏松,等.大功率超低频膜结构电磁声源振动特性研究[J].数字海洋与水下攻防,2024,7(2):146-155

复制
分享
文章指标
  • 点击次数:90
  • 下载次数: 430
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-10
  • 在线发布日期: 2024-04-23
文章二维码