近海海洋环境对水声网络性能影响试验评估
作者:
作者简介:

郝帅峰(2000-),男,硕士生,主要从事水声通信与组网研究。

中图分类号:

TN929.3

基金项目:

国家重点研发计划项目“面向海洋环境监测的信道感知水声传感网络”(2018YFE0110000);上海市科学技术委员会“科技创新行动计划”项目适用于典型浅海条件的高效高可靠水声通信设备(21DZ1205500);厦门市海洋产业项目“海域安防多平台立体信息终端的研发及产业化”(22CZB012HJ13)


Experimental Evaluation of Influence of Offshore Marine Environment on Underwater Acoustic Network Performance
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    水声网络已成为海洋信息获取、传输和感知的关键技术,并得到广泛研究。目前的水声通信研究主要集中于考虑时延、多径等水声信道影响因素。当海洋环境发生变化时,水声信道中的时延、多径的特性也会相应发生变化,从而影响水声通信系统的性能。然而,对于复杂海洋环境现象与水声网络性能的直接关联性的研究还较为有限。基于厦门海域进行的水声网络实验,从平均端到端时延、丢包率等网络性能指标评估风、浪、潮汐等典型近海海洋环境因素对水声网络性能的影响,并基于试验结果对海洋环境与水声网络性能进行关联性分析,实验结果表明:水声通信网络的时延受到温度、风速和潮位变化的影响,存在一定程度的关联性。评估分析结论可为复杂近海海洋环境下水声通信网络的设计和应用提供参考。

    Abstract:

    Underwater acoustic network has become the key technology of ocean information acquisition, transmission and perception,and has been widely studied. At present,the research of underwater acoustic communication mainly focuses on the factors affecting underwater acoustic channels such as delay and multipath. When marine environment changes,the characteristics of delay and multipath in underwater acoustic channel will change accordingly,which will affect the performance of underwater acoustic communication system. However, study on the direct correlation between complex marine environmental phenomena and underwater acoustic network performance is still limited. Based on the underwater acoustic network experiment conducted in Xiamen sea area,the impact of typical offshore marine environmental factors such as winds,waves and tides on the underwater acoustic network performance are evaluated from the average end-to-end delay,packet loss rate and other network performance indicators. Based on the test results,the correlation between the marine environment and the underwater acoustic network performance is analyzed. The experimental results show that the delay of underwater acoustic communication network is affected by temperature,wind speed and tide level. The evaluation and analysis results of this paper can provide reference for the design and application of underwater acoustic communication network in complex offshore marine environment.

    参考文献
    [1] MARVALDI J,LEGRAND J,MASSET J F,et al.ROSE project:development and demonstration of a “Mobile Response Observatory” prototype for subsea environmental monitoring[J].Geophysical Research Abstracts,2007,9:02316.
    [2] KHAN A,JENKINS L.Undersea wireless sensor network for ocean pollution prevention[C]//3rd International Conference on Communication Systems Software and Middleware and Workshops.Bangalore:IEEE,2008.
    [3] XU B Y,LIU H M,LIU B.A predictive localization algorithm for underwater wireless sensor networksbased on improved backtracking search optimization and gray wolf optimizer[C]//41st Chinese Control Conference.Hefei:IEEE,2022.
    [4] EGGEN T H.Phase coherent communication in the presence of ship noise[C]//Oceans 2000 MTS/IEEE Conference and Exhibition.Rhode Island:IEEE,2000.
    [5] 乔钢,刘凇佐,刘奇佩.水声通信网络协议、仿真与试验综述[J].水下无人系统学报,2017,25(3):151-160.
    [6] APARICIO J.Evaluation of spread-spectrum signals in realistic underwater noisy environments[C]//Oceans2016.Shanghai:IEEE,2016.
    [7] LIU S X,SHEN C C.Impact of sea waves on performance of shallow water acoustic communications[C]//2016 IEEE/OES China Ocean Acoustics(CO-A).Harbin:IEEE,2016.
    [8] ULLO S L,SINHA G R.Advances in smart environment monitoring systems using IoT and sensors[J].Sensors,2020,20(11):3113.
    [9] 罗朝辉.基于多核处理器的软件定义水声网络验证平台[D].广州:华南理工大学,2021.
    [10] ZHENG S Y,JIANG W H,TONG F,et al.Design of a UW-IoT network test platform for shallow water environment[C]//Proceedings of the 14th International Conference on Underwater Networks and Systems.Atlanta:Association for Computing Machinery,2019.
    [11] ZHANG Z,YAN S F,XU L J,et al.Design of an underwater acoustic network node[C]//2016 IEEE International Conference on Signal Processing,Communications and Computing(ICSPCC).Hong Kong:IEEE,2016.
    [12] QIAO G,ZHAO C,ZHOU F,et al.Distributed localization based on signal propagation loss for underwater sensor networks[J].IEEE Access,2019,7:112985-112995.
    [13] 刘丽丽.水声网络节点系统设计研究[D].厦门:厦门大学,2017.
    [14] 李剑汶,王小阳,童峰.浅海信道调频水声语音通信方法比较[J].舰船科学技术,2017,39(1):127-131.
    [15] 王小阳.微小型AUV水声通信技术及其实现研究[D].厦门:厦门大学,2019.
    [16] 杨逍宇,马伯乐,周跃海,等.面向长时水声通信数据采集与评估的浮标设计与实现[J].数字海洋与水下攻防,2022,5(4):279-284.
    [17] 郑思远,刘胜兴,童峰.带移动节点水声网络的负载平衡多址协议 [C]//中国声学学会水声学分会2015年学术会议论文集.北京:中国声学学会,2015.
    [18] BOROWSKI B.Characterization of a very shallow water acoustic communication channel[C]//Oceans 2009.Biloxi:IEEE,2009.
    [19] 田毅炀.基于稀疏表示的特征选择算法研究[D].厦门:厦门大学,2017.
    [20] 郑思远,李斌,曹秀岭,等.跨介质水声网络试验平台设计与试验[J].水下无人系统学报,2018,26(6):618-622.
    [21] 陈文剑,郎鹏远,尹爽,等.起伏海面环境下水声信道特性及估计方法[J].应用声学,2018,37(5):722-731.
    [22] 许肖梅.声学基础[M].北京:科学出版社,2003.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郝帅峰,杨逍宇,马伯乐,等.近海海洋环境对水声网络性能影响试验评估[J].数字海洋与水下攻防,2024,7(2):137-145

复制
分享
文章指标
  • 点击次数:164
  • 下载次数: 591
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-11-14
  • 在线发布日期: 2024-04-23
文章二维码