渤海海表面盐度神经网络反演研究
作者:
作者简介:

刘振宇(1983-),男,博士,讲师,主要从事水色遥感研究。

中图分类号:

P237︰P714

基金项目:

国家自然科学基金重点项目“多模式一体化微波遥感技术及其风浪应用”(61931025)


Retrieval of Sea Surface Salinity in the Bohai Sea by Neural Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    海表面盐度是研究海洋生态环境和全球气候变化的重要指标。基于多层神经网络,利用实测海表面盐度数据和 MODIS-Aqua 遥感反射率产品,针对渤海建立了海表面盐度的反演模型,随后通过该模型分析了 2022 年 3 月至 2023 年 3 月 4 个季度的渤海盐度时空变化。研究发现:模型的决定系数(R2 )和均方根误差(RMSE)分别为 0.66 和 0.39,优于先前文献提出的多波段线性模型(0.39 和 0.60)。渤海盐度的时空分析表明:黄河冲淡水是影响渤海海表面盐度重要因素,它致使莱州湾和辽东湾的盐度长期降低;9 月份以后随着渤海冷流沿山东半岛南下,随后向渤海海峡和北黄海方向扩散。

    Abstract:

    Sea surface salinity is an important indicator for studying marine ecological environments and global climate change. Based on a multi-layer neural network,a retrieval model for sea surface salinity in the Bohai Sea is established by using measured sea surface salinity data along with MODIS-Aqua remote sensing reflectance product. Subsequently,the spatiotemporal variations of salinity in the Bohai Sea over four quarters from March 2022 to March 2023 are investigated by mapping the salinity distribution of the Bohai using this model. The results show that the coefficient of determination(R2 )and root mean square error(RMSE)of the model are 0.66 and 0.39 respectively,which are better than the previously proposed multi-band linear model(0.39 and 0.60). The mapping of Bohai Sea salinity reveals that the dilution effect of the Yellow River freshwater is a significant factor affecting the sea surface salinity,resulting in a long-term decrease in salinity in Laizhou Bay and Liaodong Bay. After September,followed as the Bohai Cold Water Mass,the Yellow River freshwater moves southward along the Shandong Peninsula,subsequently disperses towards the Bohai Strait and the northern Yellow Sea.

    参考文献
    [1] BRASSINGTON G B,DIVAKARAN P.The theoretical impact of remotely sensed sea surface salinity observations in a multi-variate assimilation system[J].Ocean Modelling,2009,27(1-2):70-81.
    [2] DOSSA A N,ALORY G,SILVA A C.et al.Global analysis of coastal gradients of sea surface salinity[J].Remote Sensing,2021,13(13):2507.
    [3] QING S,ZHANG J,CUI T W,et al.Retrieval of sea surface salinity with MERIS and MODIS data in the Bohai Sea[J].Remote Sensing of Environment,2013(136):117-125.
    [4] WANG F G,XU Y J.Development and application of a remote sensing-based salinity prediction model for a large estuarine lake in the US Gulf of Mexico coast[J].Journal of Hydrology,2008,360(1-4):184-194.
    [5] BI J L,LIU Y,KONG X S,et al.An improved sea surface salinity retrieval algorithm for the Chinese Bohai Sea based on hyperspectral reconstruction and its applicability analysis[J].Journal of Sea Research,2023(195):102437.
    [6] KAO H Y,LAGERLOEF G S.et al.Salinity fronts in the tropical Pacific Ocean[J].Journal of Geophysical Research:Oceans,2015,120(2):1096-1106.
    [7] YU L S.Sea-surface salinity fronts and associated salinity-minimum zones in the tropical ocean[J].Journal of Geophysical Research:Oceans,2015,120(6):4205-4225.
    [8] AKHIL V P,VIALARD J,LENGAIGNE M,et al.Bay of Bengal Sea surface salinity variability using a decade of improved SMOS reprocessing[J].Remote Sensing of Environment,2020,(248):11964.
    [9] FOURNIER S,BINGHAM F M,GONZALEZ-HARO C,et al.Quantification of Aquarius,SMAP,SMOS and Argo-based gridded sea surface salinity product sampling errors[J].Remote Sensing,2023,15(2):422-432.
    [10] REUL N,GRODSKY S A,ARIAS M,et al.Sea surface salinity estimates from spaceborne L-band radiometers:an overview of the first decade of observation[J].Journal of Oceanography Research,2020,25(3):123-145.
    [11] KIM Y J,HAN D,JANG E,et al.Remote sensing of sea surface salinity:challenges and research directions[J].GIScience and Remote Sensing,2023,42(2):178-195.
    [12] SUN W F,ZHAO Y J,SUN Y G.Sea surface salinity retrieval in the Bohai Sea using MODIS data[C]//2022 IEEE International Geoscience and Remote Sensing Symposium.Kuala Lumpur:IEEE,2022.
    [13] WANG Y,DENG Z Q.Development of a MODIS data-based algorithm for retrieving nearshore sea surface salinity along the northern Gulf of Mexico coast[J].Journal of Oceanographic Research,2018,30(4):567-582.
    [14] FOURNIER S,CHAPRON B,SALISBURY D,et al.Comparison of spaceborne measurements of sea surface salinity and colored detrital matter in the Amazon plume[J].Journal of Geophysical Research:Oceans,2015,120(5):3177-3192.
    [15] SUFFAN I,NURHAFZA R,HAZWANI M A.Empirical ocean colour algorithms for estimating sea surface salinity in coastal water of Terengganu[J].Pertanika Journal of Science & Technology,2017,25(4):1135-1146.
    [16] YU X,XIAO B,LIU X Y,et al.Retrieval of remotely sensed sea surface salinity using MODIS data in theChinese Bohai Sea[J].International Journal of Remote Sensing,2017,38(23):7357-7373.
    [17] LIU R J,ZHANG J,YAO H Y,et al.Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager[J].Estuarine Coastal and Shelf Science,2017,196(5):227-236.
    [18] KIM D W,KIM S H,BAEK J Y.et al.GOCI-II based sea surface salinity estimation using machine learning for the first-year summer[J].International Journal of Remote Sensing,2022,43(18):6605-6623.
    [19] KOROSOV A,COUNILLON F,JOHANNESSEN J A.Monitoring the spreading of the Amazon freshwater plume by MODIS,SMOS,Aquarius and TOPAZ[J].Journal of Geophysical Research:Oceans,2015,120:268-283.
    [20] BAYATI M,DANESH-YAZD M.Mapping the spatiotemporal variability of salinity in the hypersaline Lake Urmia using Sentinel-2 and Landsat-8 imagery[J].Journal of Hydrology,2021,595:126032.
    [21] 柳青青,孟朔羽,徐茗,等.随机森林反演卫星遥感海表面盐度研究[J].武汉大学学报:信息科学版,2023,48(9):1538-1545.
    [22] FAN Y Z,LI W,GATEBE C K,et al.Atmospheric correction over coastal waters using multilayer neural networks[J].Remote Sensing of Environment,2017,199:218-240.
    [23] JIANG Q H,ZHU L L,SHU C,et al.An efficient multilayer RBF neural network and its application to regression problems[J].Neural Computing and Applications,2022,34(6):4133-4150.
    [24] XIAO C,SUN D Y,WANG S Q,et al.Long-term changes in colored dissolved organic matter from satellite observations in the Bohai Sea and North Yellow Sea[J].Remote Sensing,2018,10(5):688-709.
    [25] ZHANG C Y,BENGIO S,HARDT M,et al.Understanding deep learning requires rethinking generalization[EB/OL].[2016-11-10].https://arxiv.org/abs/1611.03530.
    [26] SALISBURY J,VANDEMAR D K,CAMPBELL J.et al.Spatial and temporal coherence between Amazon River discharge,salinity,and light absorption by colored organic carbon in western tropical Atlantic surface waters[J].Journal of Geophysical Research:Oceans,2011,116(C7):C006989.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘振宇,孙伟富,陈磊.渤海海表面盐度神经网络反演研究[J].数字海洋与水下攻防,2024,7(1):79-86

复制
分享
文章指标
  • 点击次数:51
  • 下载次数: 322
  • HTML阅读次数: 126
  • 引用次数: 0
历史
  • 收稿日期:2023-11-20
  • 在线发布日期: 2024-03-01
文章二维码