仿生机器鱼外形设计及流场阻力数值分析
作者:
作者单位:

汕头大学 工学院 广东省 汕头市


Numerical analysis of the shape design and flow field resistance of the bionic robot fish
Author:
Affiliation:

Shantou university,Engineer college,Shantou city

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    在机器鱼设计过程中,鱼体、尾鳍的外形设计十分重要。为了研究流体阻力更小、推进效率更高的全鱼外形,本文以金枪鱼、海豚和旗鱼为仿生对象,建立了三种不同的机器鱼模型,运用动网格技术定义了边界条件,并用数值方法分析了三种模型在流场中的速度、鱼体受力等水动力性能。结果表明,旗鱼模型游动性能最好,相比于金枪鱼与海豚模型,行进过程中受到的阻力更小,且通过斯特罗哈尔数比较旗鱼模型推进效率更高;另一方面,新月鳍仿生鱼游动速度最高,是八字鳍仿生鱼的2.2倍左右;因此,旗鱼新月鳍机器鱼具有更好的游动性能。计算结果对减小机器鱼流体阻力,提高其推进效率提供了较好的参考价值。

    Abstract:

    In the process of robotic fish design, the shape design of fish body and tail fin is very important. In order to study the shape of the whole fish with less fluid resistance and higher propulsion efficiency, this paper took tuna, dolphin and sailfish as bionic objects, established three different robotic fish models, defined the boundary conditions by using dynamic mesh technology, and analyzed the hydrodynamic performances such as velocity and fish body force of the three models in the flow field by numerical methods. The results show that the sailfish model has the best swimming performance, and the drag force during travelling is smaller than that of the tuna and dolphin models, and the propulsion efficiency of the sailfish model is higher by comparing with the Strouhal. On the other hand, the crescent-fin bionic fish has the highest swimming speed, which is about 2.2 times higher than the octagonal-fin bionic fish; Therefore, sailfish crescent-finned robotic fish has better swimming performance. The calculation results provide a good reference value for reducing the fluid resistance of the machine fish and improving its propulsion efficiency.

    参考文献
    [1] [8]马楷东,张瑞荣,郭鑫等.仿双髻鲨头部的仿生机器鱼外型设计及其流场特性[J].力学学报,2021,53(12):3389-3398
    [2] 成玉强,帅长庚. 单关节尾鳍驱动式机器鱼的运动分析与仿真 [J]. 海洋技术学报, 2018, 37 (06): 7-14.
    [3] Zhang X , Su Y M, Wang Z L. Numerical and experimental studies of influence of the caudal fin shape on the propulsion performance of a flapping caudal fin[J].Journal of Hydrodynamics,Ser.B,2011, 23(03):325-332.
    [4] Krishnadas A , Ravichandran S , Rajagopal P . Analysis of biomimetic caudal fin shapes for optimal propulsive efficiency[J]. Ocean Engineering, 2018, 153(APR.1):132-142.
    [5] 张曦,苏玉民,王兆立. 尾鳍形状对摆动尾鳍推进性能的影响[J]. 上海交通大学学报,2012,46(02):296-300.
    [6] 汤琳,邓见,张军等. 仿生机器鱼尾鳍推进性能实验研究 [J]. 水动力学研究与进展A辑, 2016, 31 (01): 56-62.
    [7] 刘继鑫,何波,严天宏. 鲆鲽鱼型双驱动仿生机器鱼水动力研究 [J]. 船舶工程, 2023, 45 (01): 84-90.
    [8] 马楷东,张瑞荣,郭鑫等.仿双髻鲨头部的仿生机器鱼外型设计及其流场特性[J].力学学报,2021,53(12):3389-3398
    [9] 田晓洁,刘运祥,刘贵杰等. 仿金枪鱼三维建模及流场受力分析 [J]. 中国海洋大学学报(自然科学版), 2019, 49 (11): 139-144.
    [10] 周澍欣,胡庆松.鲤鱼三维建模及流场受力数值计算[J].上海海洋大学学报, 2013, 22 (06): 855-861.
    [11] 王程. 拉线驱动柔性脊柱仿生鱼的设计与实验研究[D].哈尔滨工程大学,2019.
    [12] 胡瑞南,梅杰,程正树等. 尾鳍摆动驱动仿生机器鱼的水动力性能仿真分析 [J]. 武汉科技大学学报, 2020, 43 (06): 463-470.
    [13] 陈宏. 仿生机器鱼巡游和机动的运动机理研究[D]. 安徽:中国科学技术大学,2006.
    [14] 夏丹,陈维山,伍志军等. 鲹科模式机器鱼自主游动的水动力特性研究 [J]. 机械工程学报, 2013, 49 (21): 54-61.
    [15] Xue G, Liu Y, Zhang M, et al. Numerical analysis of hydrodynamics for bionic oscillating hydrofoil based on panel method[J]. Applied Bionics and Biomechanics, 2016.
    [16] 冯亿坤. 尾鳍与胸鳍联合推进的仿生鱼自主游动数值模拟研究[D].哈尔滨工程大学,2021.
    [17] 柏开祥,郑伟涛,王德恂等. 基于ITTC-57对于帆板阻力成分的计算与分析 [J]. 武汉理工大学学报, 2006, (05): 98-101.
    [18] Triantafyllou MS, Triantafyllou GS. An efficient swimming machine. Scientific American, 1995, 272(3): 64-70
    [19] Li, Wen, Tianmiao, et al. Quantitative Thrust Efficiency of a Self-Propulsive Robotic Fish: Experimental Method and Hydrodynamic Investigation[J]. Mechatronics IEEE/ASME Transactions on, 2013.
    [20] 教柳,张保成,张开升等. 两关节压力驱动柔性仿生机器鱼的设计与仿真 [J]. 力学学报, 2020, 52 (03): 817-827.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:45
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-29
  • 最后修改日期:2024-02-01
  • 录用日期:2024-02-22
文章二维码