面向多区域高效搜索的UUV集群任务分配
作者:
作者单位:

1.中国船舶集团有限公司第七一〇研究所;2.华中科技大学人工智能与自动化学院


UUV Swarm Task Allocation for Efficient Multi-Area Searching
Author:
Affiliation:

1.NO.710 R&2.D Institute, CSSC;3.School of Artificial Intelligence and Automation, Huazhong University of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • | | | |
  • 文章评论
    摘要:

    UUV集群在执行大范围搜索任务时分配方案的优劣对于提高任务执行效率至关重要。本文研究解决UUV集群同时进行多区域搜索中的任务分配问题,使得全部区域搜索完成时长最小。针对传统匈牙利算法无法高效解决不平衡任务分配的问题,提出一种改进匈牙利多轮分配算法。该算法通过多轮任务分配,实现空闲UUV高效利用和目标区域合理分配,通过在代价函数中引入边际代价和保守估计时长,大大减小了全部区域搜索完成时长。仿真实验结果表明,本文提出的算法相比传统匈牙利算法能够合理分配空闲UUV提高分配效率。此外,相较于仅采用搜索时长为代价函数,本文在代价函数中引入的边际代价和保守估计时长能够针对耗时长的区域最大限度缩短搜索时长,保证随着UUV数量的增加,全部区域搜索完成时长单调递减。

    Abstract:

    Task allocation is crucial to improve the efficiency when UUV performs large-scale searching tasks. This paper solves the task allocation problem of UUV swarm in multi-area searching, so that the completion time of area searching is minimized. Aiming at the problem that the traditional Hungarian algorithm cannot solve the problem of unbalanced task allocation, an improved Hungarian multi-round allocation algorithm is proposed. This algorithm achieves efficient utilization of idle UUVs and allocating multiple UUVs to target areas in multiple rounds. By introducing the marginal cost and conservative estimating time in the cost function, the completion time of area searching is greatly reduced. The simulation experiment results show that the algorithm proposed in this article can allocate idle UUVs and improve allocation efficiency compared with the traditional Hungarian algorithm. In addition, compared with the algorithm only using the search time as the cost function, our algorithm can shorten the search time as much as possible for long-time-consuming areas, ensuring that the completion time of area searching decreases monotonically as the number of UUVs increases.

    参考文献
    [1] 杜方键,张永峰,张志正,等.水下无人作战平台发展现状与趋势分析[J].科技创新与应用,2019(27):6-10.
    [2] 严浙平,刘祥玲.多UUV协调控制技术研究现状及发展趋势[J].水下无人系统学报,2019,27(3):226-231.
    [3] Jia Z, Yu J, Ai X, et al. Cooperative multiple task assignment problem with stochastic velocities and time windows for heterogeneous unmanned aerial vehicles using a genetic algorithm [J]. Aerospace Science and Technology, 2018, 76:112-125.
    [4] Jose K, Pratihar D K. Task allocation and collision-free path planning of centralized multi-robots system for industrial plant inspection using heuristic methods [J]. Robotics and Autonomous Systems, 2016, 80:34-42.
    [5] 李冰,徐杰,杜文.用模拟退火算法求解有顺序约束指派问题[J].系统工程理论方法应用,2002,11(4):330-335.
    [6] 范梦情.基于多机器人的任务分配协作研究[D].浙江理工大学,2022.
    [7] 杜金玲,周杰.关于几种不平衡指派问题的修正匈牙利解法[J].价值工程,2010,29(13):120-122.
    [8] 马晓娜.“人少任务多”型指派问题的一种新算法[J].重庆工商大学学报(自然科学版),2014,31(12),68-71.
    [9] 霍一鸣.多机器人系统的智能任务分配方法[D].南京理工大学,2020.
    [10] 任金霞,何富江.快速降阶匈牙利算法的云计算任务分配模型[J].江西理工大学学报,2014,35(3),63-67.
    [11] 周安琪.多UUV/USV路径规划及协同编队控制[D].南京理工大学,2021.
    [12] 姜大鹏.多水下无人机器人协调控制技术研究[D].哈尔滨工程大学,2011.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:41
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-20
  • 最后修改日期:2024-01-23
  • 录用日期:2024-02-22
文章二维码