基于遥感的海洋三维温盐场智能探测研究进展
作者:
作者单位:

1.自然资源部第一海洋研究所;2.青岛大学 计算机科学技术学院;3.中国石油大学(华东) 海洋与空间信息学院

基金项目:

国家自然科学基金项目“基于海洋表层卫星遥感观测的海洋水下动力环境智能探测方法研究”(62231028)。


Research progress on intelligent detection of three-dimensional ocean temperature and salinity based on remote sensing
Author:
Affiliation:

1.First Institute of Oceanography,Ministry of Natural Resources;2.College of Computer Science Technology,Qingdao University;3.College of Oceanography and Space Informatics,China University of Petroleum (East China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • | | | |
  • 文章评论
    摘要:

    海洋三维温盐场信息是描述海洋物理属性特征和掌握海洋物理运动过程的重要参数,获取准确的海洋三维温度和盐度信息对于认识海洋、开发利用海洋和海洋科学研究等具有重要意义。随着人工智能与深度学习方法的发展,采用深度学习方法的海洋次表层三维温盐场智能探测研究成为热点之一。本文从海洋温盐观测数据集、传统机器学习方法三维温盐智能探测、一般神经网络三维温盐智能探测和深度学习三维温盐智能探测等方面展开,对与海洋三维温盐场智能探测相关的研究进展进行综述,论文最后针对三维温盐场智能探测存在的问题和未来的发展趋势进行了总结和展望。

    Abstract:

    The three-dimensional temperature and salinity field information of the ocean is an important parameter for describing the physical properties of the ocean and mastering the process of ocean physical movement. Obtaining accurate three-dimensional temperature-salinity information of the ocean is of great significance for understanding the ocean, developing and utilizing the ocean, and marine scientific research. With the development of artificial intelligence and deep learning methods, the intelligent detection of subsurface three-dimensional temperature and salinity fields using deep learning methods has become one of the hotspots. This article reviews the research progress related to the intelligent detection of ocean three-dimensional temperature and salinity fields from the perspectives of ocean temperature and salinity observation datasets, traditional machine learning methods for three-dimensional temperature and salinity intelligent detection, general neural network three-dimensional temperature and salinity intelligent detection, and deep learning three-dimensional temperature and salinity intelligent detection. Finally, the paper summarizes and looks forward to the problems and future development trends of intelligent detection of three-dimensional temperature and salinity fields.

    参考文献
    [1] 孙春健,张晓爽,张寅权,等. 卫星遥感重构海洋次表层研究进展[J]. 海洋信息,2018,33(4):21-28.
    [2] GARCIA H E,BOYER T P,LOCARNINI R A,et al. World Ocean Database 2018: User’s Manual (prerelease) [EB/OL]. (2018-10-02) [2023-12-11]. https://www.ncei.noaa.gov/products/world-ocean-database.
    [3] GOOD S A,MARTIN M J,RAYNER N A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. Journal of Geophysical Research: Oceans,2013,118(12):6704-6716.
    [4] SU H,WU X,YAN X H,et al. Estimation of subsurface temperature anomaly in the Indian Ocean during recent global surface warming hiatus from satellite measurements: A support vector machine approach[J]. Remote Sensing of Environment,2015,160:63-71.
    [5] 黎文娥,苏华,汪小钦,等. 多源卫星观测的全球海洋次表层温度异常信息提取[J]. 遥感学报,2017,21(6):881-891.
    [6] SU H,LI W,YAN X H. Retrieving temperature anomaly in the global subsurface and deeper ocean from satellite observations[J]. Journal of Geophysical Research: Oceans,2018,123:399-410.
    [7] SU H,YANG X,LU W,et al. Estimating subsurface thermohaline structure of the global ocean using surface remote sensing observations[J]. Remote Sensing,2019,13.
    [8] 张天一,苏华,杨欣,等. 基于LightGBM的全球海洋次表层温盐遥感预测[J]. 遥感学报,2020,24(10):1255-1269.
    [9] 汤贵艳,朱善良,周伟峰,等.基于高斯混合聚类和LightGBM算法的印度洋次表层温度反演研究[J]. 青岛科技大学学报(自然科学版),2023,44(2):116-126.
    [10] LU X H,SU H,XIN Y,et al. Subsurface temperature estimation from remote sensing data using a clustering-neural network method[J]. Remote Sensing of Environment,2019,229:213-222.
    [11] WANG H,SONG T,ZHU S,et al. Subsurface temperature estimation from sea surface data using neural network models in the Western Pacific Ocean[J]. Mathematics,2021,9.
    [12] CHENG H,SUN L,LI J. Neural network approach to retrieving ocean subsurface temperatures from surface parameters observed by satellites[J]. Water,2021,13,388.
    [13] CHEN Z,WANG P,BAO S,et al. Rapid reconstruction of temperature and salinity fields based on machine learning and the assimilation application[J]. Frontiers in Marine Science,2022,1-16.
    [14] 聂旺琛,王喜冬,陈志强,等. 基于神经网络的全球三维温盐场重构技术研究[J]. 热带海洋学报,2022,41(2):1-15.
    [15] HAN M,FENG Y,ZHAO X,et al. A convolutional neural network using surface data to predict subsurface temperatures in the Pacific Ocean[J]. IEEE Access,2019,7:172816-172829.
    [16] SU H,WANG A,ZHANG T,et al. Super-resolution of subsurface temperature field from remote sensing observations based on machine learning[J]. International Journal of Applied Earth Observation and Geoinformation,2021,102,102440.
    [17] MENG L,YAN C,ZHUANG W,et al. Reconstruction of three-dimensional temperature and salinity fields from satellite observations[J]. Journal of Geophysical Research: Oceans,2021,126,e2021JC017605.
    [18] ZUO X, ZHOU X, GUO D,et al. Ocean temperature prediction based on stereo spatial and temporal 4-D convolution model[J]. IEEE Geoscience and Remote Sensing Letters,2022,19:1-5.
    [19] MENG L,YAN C,ZHUANG W,et al. Reconstructing high-resolution ocean subsurface and interior temperature and salinity anomalies from satellite observations[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-14.
    [20] MAO K,LIU C,ZHANG S,et al. Reconstructing ocean subsurface temperature and salinity from sea surface information based on dual path convolutional neural networks[J]. Journal of Marine Science and Engineering,2023,11(5):1030.
    [21] MENG Y,RIGALL E,CHEN X,et al. Physics-guided generative adversarial networks for sea subsurface temperature prediction[J]. IEEE Transactions on Neural Networks and Learning Systems,2023,34(7):3357-3370.
    [22] ZHANG J,ZHANG X,WANG X,et al. Reconstructing 3D ocean subsurface salinity (OSS) from TS mapping via a data-driven deep learning model[J]. Ocean Modelling,2023,184:102232.
    [23] SU X H. Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks[J]. Remote Sensing of Environment,2021,260:112465.
    [24] XIAO C,TONG X,LI D,et al. Prediction of long lead monthly three-dimensional ocean temperature using time series gridded Argo data and a deep learning method[J]. International Journal of Applied Earth Observation and Geoinformation,2022,112:102971.
    [25] SONG T,WEI W,MENG F,et al. Inversion of ocean subsurface temperature and salinity fields based on spatio-temporal correlation[J]. Remote Sensing,2022,14:2587.
    [26] SU H,JIANG J,WANG A,et al. Subsurface temperature reconstruction for the global ocean from 1993 to 2020 using satellite observations and deep learning[J]. Remote Sensing,2022,14:3198.
    [27] ZHANG K,GENG X,YAN X-H. Prediction of 3-D Ocean Temperature by Multilayer Convolutional LSTM[J]. IEEE Geoscience and Remote Sensing Letters,2020,17(8):1303-1307.
    [28] 张昆. 基于深度学习的深海遥感技术研究.硕士学位论文[M]. 厦门大学,2019年.
    [29] SU H,LU W,WANG A,et al. AI-Based subsurface thermohaline structure retrieval from remote sensing observations//Artificial Intelligence Oceanography[M]. Singapore:Springer Nature Singapore Pte Ltd.,2023:105-123.
    [30] WU X,YAN X-H,JO Y H,et al. Estimation of subsurface temperature anomaly in the North Atlantic using a self-organizing map neural network[J]. Journal of Atmospheric Oceanic Technology,2012,29(11):1675-1688.
    [31] CHEN C,LIU Z C,LI Y,et al. Reconstructing subsurface temperature profiles with sea surface data worldwide through deep evidential regression methods[J]. Deep Sea Research Part I,2023,197:104054.
    [32] XIE H,XU Q,CHENG Y,et al. Reconstruction of subsurface temperature field in the South China Sea from satellite observations based on an attention U-Net model[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:4209319.
    [33] Sun N,Zhou Z,Li Q,et al. Spatiotemporal prediction of monthly sea subsurface temperature fields using a 3D U-Net-Based model[J]. Remote Sensing. 2022, 14, 4890.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:124
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-13
  • 最后修改日期:2023-12-21
  • 录用日期:2023-12-26
文章二维码