基于极限学习自编码器的水声信号目标识别方法
DOI:
CSTR:
作者:
作者单位:

水下测控技术重点实验室

作者简介:

通讯作者:

中图分类号:

TB556

基金项目:


A Target Recognition Method for Underwater Acoustic Signal Based on Extreme Learning Autoencoder
Author:
Affiliation:

Science and Technology on Underwater Test and Control Laboratory

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的机器学习方法在特征提取时容易受到主观经验的影响,导致对水声信号目标的识别准确率不高。而一般深度学习算法模型较复杂,通常具有训练耗时、计算复杂度高等缺点,极限学习自编码器具有很强的非线性处理能力,适合针对具有非线性特点的水声信号目标的识别,而且模型具有学习速度快,泛化能力强等显著优势,本文将极限学习自编码器算法应用于水声信号目标识别中,并与卷积神经网络、自编码器和极限学习机识别方法进行对比,结果表明,本文提出的方法对水声信号目标识别的准确率最优,且训练时间较短。

    Abstract:

    Traditional machine learning methods are easily influenced by subjective experience during feature extraction,Causing low recognition accuracy of underwater acoustic signal targets.Generally,deep learning algorithm models are complex,Training is time-consuming and computationally complex.Extreme Learning Autoencoder has strong non-linear processing ability,it is suitable for underwater acoustic signal target recognition with nonlinear characteristics.Moreover,the model has significant advantages such as fast learning speed and strong generalization ability.This paper applies the extreme learning autoencoder algorithm to underwater acoustic signal target recognition,and compare with convolutional neural networks,autoencoders,and extreme learning machine recognition methods.The result shows that the proposed method has the best accuracy in target recognition of underwater acoustic signals hand has a shorter training time.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-08
  • 最后修改日期:2024-04-02
  • 录用日期:2024-05-09
  • 在线发布日期:
  • 出版日期:
文章二维码