超低频电磁声源非线性动力学建模与分析
作者:
作者单位:

1.中国船舶集团有限公司第七一〇研究所;2.湖南大学

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Modeling and analysis of nonlinear dynamics of ultra-low frequency electromagnetic sound source
Author:
Affiliation:

1.NO.710 R&2.amp;3.D Institute,CSSC;4.HUNAN University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    可变磁阻式电磁声源输出力大、体积小、易于实现超低频输出,在无人反水雷作战中具有显著优势。其动力学行为受到机械回复力和电磁力的耦合作用影响,当施加电流超过坍塌电流,电磁力将超过机械回复力,就会发生吸和,造成声源的损坏。为准确描述可变磁阻式电磁声源非线性动力学特性,预先评估坍塌电流,该文建立考虑动态漏磁系数的声源非线性动力学模型。通过三维有限元仿真计算动铁芯运动到不同位置处气隙的漏磁系数,拟合得到动态漏磁系数,根据等效磁路法建立声源的改进电磁力模型,进而建立电磁声源非线性动力学模型,通过Runge-Kutta算法计算得到阶跃激励下声源振动的位移和速度,绘制相平面图,研究稳定与失稳两种情况下的相轨迹的动态变化规律,为可变磁阻式电磁声源的设计和控制提供理论支撑。

    Abstract:

    The variable reluctance electromagnetic sound source has the advantages of large output force, small size and easy realization of ultra-low frequency output. Its dynamic behavior is affected by the coupling effect of mechanical recovery force and electromagnetic force. When the applied current exceeds the collapse current, the electromagnetic force will exceed the mechanical recovery force, and suction will occur, resulting in damage to the sound source. In order to accurately describe the nonlinear dynamic characteristics of the variable reluctance electromagnetic sound source and evaluate the collapse current in advance, a nonlinear dynamic model of the sound source considering the dynamic magnetic leakage coefficient is established. The magnetic leakage coefficient of the air gap where the moving iron core moves to different positions was calculated by three-dimensional finite element simulation, and the dynamic magnetic leakage coefficient was obtained by fitting. The improved electromagnetic force model of the sound source was established according to the equivalent magnetic circuit method, and then the nonlinear dynamic model of the electromagnetic sound source was established. The Runge-Kutta algorithm is used to calculate the displacement and velocity of the sound source vibration under step excitation, plot the phase plan, and study the dynamic change law of the phase trajectory under the two conditions of stability and instability, providing theoretical support for the design and control of the variable reluctance electromagnetic sound source

    参考文献
    [1] 王炳洋.舰船辐射噪声特性重构技术[D].中国舰船研究院,2016.
    [2] 刘忠乐, 文无敌. 反水雷物理场对抗技术[M].北京:兵器工业出版社, 2015.
    [3] 卢苇. 大功率甚低频水下声源研究[D].哈尔滨:哈尔滨工程大学, 2011.
    [4] 冯健. 磁悬浮控制力矩陀螺关键技术研究[D].长沙:国防科学技术大学, 2018.
    [5] 侯二永. 磁悬浮控制力矩脱落结构设计与动力学分析[D]长沙:国防科学技术大学, 2013.
    [6] 杜佩佩, 鲁军勇, 冯军红, 谭赛, 李开, 李湘平.电磁轨道发射器电磁结构耦合动态发射过程数值模拟[J].电工技术学报, 2020, 35(18): 3802-3810.
    [7] 姜豪, 苏振中, 王东. 运动平台上磁轴承-转子系统的动力学建模[J].电工技术学报, 2019, 34(23): 4880-4889.
    [8] 左曙光, 黄荣奎, 冯朝阳, 胡坤. 考虑驱动线圈位移变化的电动振动台非线性电磁力建模与分析[J].电工技术学报,2019,34(21):4441-4448.
    [9] 何海婷,柳亦兵,巴黎明等.基于BP神经网络的飞轮储能系统主动磁轴承非线性动力学模型[J].中国电机工程学报,2022,42(03):
    [10] 禹春敏, 邓智泉, 梅磊, 庞古才. 基于精确磁路的新型混合型轴向-径向磁悬浮轴承研究[J].电工技术学报,2021,36(06):1219-1228.
    [11] 周航, 袁佳歆, 陈凡, 张朝阳, 胡红娇. 计及永磁体 漏磁效应的磁饱和型高压直流限流器设计方法[J]. 电工技术学报,2021,36(09):1956-1966.
    [12] 黄允凯, 周涛. 基于等效磁路法的轴向永磁电机效 率优化设计[J].电工技术学报,2015,30(02):73-79.
    [13] Ding J, Yang X, Long Z, et al. Three-Dimensional Numerical Analysis and Optimization of Electromagnetic Suspension System for 200 km/h Maglev Train Considering Eddy Current Effect[J]. IEEE Access, 2018, 6:61547-61555.
    [14] 丁菁芳. 磁浮列车悬浮控制系统性能评价方法研究[D].长沙:国防科技大学,2018.
    [15] Daghigh A, Javadi H, Javadi A. Improved Analytical Modeling of Permanent Magnet Leakage Flux in Design of the Coreless Axial Flux Permanent Magnet Generator[J]. Canadian Journal of Electrical & Computer Engineering, 2017, 40(1):3-11.
    [16] Lu X. Electromagnetically-driven ultra-fast tool servos for diamond turning[D]. Massachusetts: Massachusetts Institute of Technology, 2005.
    [17] Yang C, Peng Z, Tai J, et al. Torque Characteristics Analysis of Slotted-Type Eddy-Current Couplings Using a New Magnetic Equivalent Circuit Model[J]. IEEE Transactions on Magnetics, 2020, PP(99):1-1.
    [18] 张振铎.超低频大功率电磁式换能器研究[D].哈尔滨:哈尔滨工程大学,2019.
    [19] 郑永成, 王洋, 何建国, 等.基于磁场分割的磁导 计算与磁路设计[J].机械与电子,2006(7),11-13.
    [20] 陈安林, 张鸣, 朱煜. 超精密微动台变磁阻电机建 模[J].中国电机工程学报,2015,35(20):5327-5334.01.
    [21] 杜功焕, 朱哲民. 声学基础-第2版[M].南京:南京大学出版社, 2001.
    [22] 胡寿松. 自动控制原理(第四版)[M].北京:科学出版社, 2001.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:61
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-11-21
  • 最后修改日期:2023-12-22
  • 录用日期:2024-01-15
文章二维码