渤海海表面盐度神经网络反演研究
DOI:
CSTR:
作者:
作者单位:

1.中南民族大学资源与环境学院;2.自然资源部第一海洋研究所海洋物理与遥感研究室;3.中国科学院海洋研究所

作者简介:

通讯作者:

中图分类号:

P237

基金项目:

国家自然科学基金: 61931025。


Retrieval Sea Surface Salinity in Bohai by Neural network
Author:
Affiliation:

1.South-Central Minzu University;2.Marine Physics and Remote Sensing Laboratory,first Institute of Oceanography, MNR;3.Institute of Oceanology, Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    海表面盐度是研究海洋生态环境和全球气候变化的重要指标。基于多层神经网络,利用实测海表面盐度数据和MODIS-Aqua遥感反射率产品,针对渤海建立了海表面盐度的反演模型,随后通过该模型分析了2022年3月至2023年3月四个季度的渤海盐度时空变化。研究发现:模型的决定系数(R2)和均方根误差(RMSE)分别为0.66和0.39,优于先前文献提出的多波段线性模型(0.39和0.60)。渤海盐度的时空分析表明:黄河冲淡水是影响渤海海表面盐度重要因素,它致使莱州湾和辽东湾的盐度长期降低;9月份以后随着渤海冷流沿山东半岛南下,随后向渤海海峡和北黄海方向扩散。

    Abstract:

    The sea surface salinity is an important indicator for studying marine ecological environments and global climate change. Based on a multi-layer neural network, a retrieval model for sea surface salinity in the Bohai Sea was established by using measured sea surface salinity data along with MODIS-Aqua remote sensing reflectance products. Subsequently, the spatiotemporal variations of salinity in the Bohai Sea over four quarters from March 2022 to March 2023 were investigated by mapping the salinity distribution of Bohai using this model. The study found that the model"s coefficient of determination (R2) and root mean square error (RMSE) were 0.66 and 0.60 respectively, perform better than the previously proposed multi-band linear model (0.39 and 0.66). The mapping of Bohai Sea salinity revealed that the dilution effect of the Yellow River freshwater is a significant factor influencing the sea surface salinity, resulting in a long-term decrease in salinity in Laizhou Bay and Liaodong Bay; After September, followed as the Bohai Cold Water Mass, the Yellow River freshwater moves southward along the Shandong Peninsula, subsequently disperses towards the Bohai Strait and the northern Yellow Sea.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-20
  • 最后修改日期:2023-12-14
  • 录用日期:2023-12-19
  • 在线发布日期:
  • 出版日期:
文章二维码