基于粒子群优化自抗扰控制的舵系统研究
作者:
作者单位:

中国船舶集团有限公司第七一〇研究所


Research on rudder system based on particle swarm optimization active disturbance rejection control
Author:
Affiliation:

The 710 Research Institute of CSSC

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • | | | |
  • 文章评论
    摘要:

    舰载诱饵干扰弹作为重要的防御性武器,其舵系统对保证飞行控制系统的动态品质和飞行安全具有核心作用。传统的PID控制算法在抗干扰能力和快速响应能力方面存在局限性。为此引入粒子群优化技术并集成自抗扰和智能算法的优势,以改进自抗扰控制算法,提高舵系统的抗干扰能力和稳定性。针对自抗扰控制存在的离线调节问题,提出使用粒子群智能算法在线优化舵系统控制器的参数,以适应环境变化及时调整,解决控制性能受限问题。系统的仿真实验结果显示,与传统的PID算法和ADRC算法相比,基于粒子群优化的自抗扰控制方法在舵系统位置环控制中拥有更优的性能。

    Abstract:

    As an important defensive weapon, the rudder system of the ship-borne decoy jamming missile plays a central role in ensuring the dynamic quality and flight safety of the flight control system. Traditional PID control algorithms have limitations in terms of anti-interference and fast response capabilities. Therefore, the particle swarm optimization technology is introduced and the advantages of self-disturbance rejection and intelligent algorithms are integrated to improve the self-disturbance rejection control algorithm and enhance the anti-interference capability and stability of the rudder system. In view of the offline adjustment problem of self-disturbance rejection control, the use of particle swarm intelligence algorithm to optimize the parameters of the rudder system controller online is proposed to adapt to environmental changes and adjust in time, solving the problem of limited control performance. The simulation results of the system show that compared with traditional PID algorithm and ADRC algorithm, the self-disturbance rejection control method based on particle swarm optimization has better performance in the position loop control of the rudder system.

    参考文献
    [1] 许政,王强,于勇,等.舷外有源诱饵干扰作战使用研究[J]. 现代电子技术,2010,33(21):61-64.
    [2] 吴兆东,胡生亮,罗亚松,等.舷外有源诱饵对雷达末制导目标定位的干扰动态分析[J]. 电子科技大学学报,2023,52(05):709-717.
    [3] 张展华,桂延宁,周彬,等.基于模糊自适应的连续整定PID舵机控制器[J].探测与控制学报,2018,40(04):73-79.
    [4] 尹洪桥,易文俊,李璀璀,等.基于速度环模糊参数自适应PID算法的弹载无刷直流电机控制系统研究[J]. 兵工学报,2020,41(S1):30-38.
    [5] 李冬辉,王立献,周满,等.基于改进径向基网络的电动舵机滑模控制[J].兵器装备工程学报,2023,44(04):217-223.
    [6] 李璀璀,易文俊,管军,等.基于遗传算法的电动舵机系统模糊PID控制[J]. 兵器装备工程学报,2021,42(03):162-167.
    [7] 张强,张军,蔡权林,等.基于LADRC的电动舵机高动态控制方法[J]. 电子机械工程,2020,36(01):60-64.
    [8] 韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
    [9] 赵志良.自抗扰控制设计与理论分析[M].北京:科学出版社,2018.
    [10] 史永丽,侯朝桢,苏海滨.基于粒子群优化算法的自抗扰控制器设计[J]. 系统仿真学报,2008(02):433-436.
    [11] 李健,谭文,张彬文.观测器带宽参数化的自抗扰控制[J]. 控制工程,2022,29(07):1181-1186.
    [12] Islam Muhammad Muzammal, Siffat Syed Ahmad, Ahmad Iftikhar, et al. Supertwisting and terminal sliding mode control of course keeping for ships by using particle swarm optimization[J]. Ocean Engineering, 2022, 266(3).
    [13] 路复宇,童宁宁,冯为可,等.自适应杂交退火粒子群优化算法[J]. 系统工程与电子技术,2022,44(11):3470-3476.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:50
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-31
  • 最后修改日期:2023-12-18
  • 录用日期:2023-12-19
文章二维码