基于自抗扰的双环路UUV航向角控制方法
作者单位:

海军装备部


A Dual Loop UUV Heading Angle Control Method Based on Autodisturbance Rejection Control
Author:
Affiliation:

PLA Naval Equipment Department

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    针对水下无人航行器(UUV)受到海流海浪等外部扰动与内部模型不确定导致航向角控制品质下降的问题,提出一种基于自抗扰(ADRC)的双环路航向角控制方法。首先,建立了UUV的六自由度动力学、运动学模型与水平面动力学模型。然后,设计了一种非线性控制器,将自抗扰控制与双控制环路相结合。针对系统航向控制所受内部与外部等非线性因素的影响,采用扩张状态观测器对“总和”扰动进行观测与补偿。在采用自抗扰控制的航向角反馈控制回路的基础上,增加航向角速度内环,降低系统对扰动的灵敏度,改造被控对象的传递函数,为外环路提供良好的被控对象模型。最后,通过仿真实验验证了该控制方法的有效性。

    Abstract:

    A dual loop heading angle control method based on Active Disturbance Rejection (ADRC) is proposed to address the issue of degraded heading angle control quality caused by external disturbances such as ocean currents and waves and internal model uncertainties for underwater unmanned aerial vehicles (UUV). First, a six degree of freedom dynamic, kinematic and horizontal plane dynamic model of the UUV was established. Then, a nonlinear controller was designed that combines ADRC with dual control loops. To tackle with the influence of internal and external nonlinear factors on the system heading control, an extended state observer is used to observe and compensate for the "sum" disturbance. On the basis of the heading angle feedback control loop using ADRC, an inner loop of heading angle velocity is added to reduce the sensitivity of the system to disturbances, modify the transfer function of the controlled object, and provide a good controlled object model for the outer loop. Finally, the effectiveness of the control method was verified through simulation experiments.

    参考文献
    [1] 吴有生,赵羿羽,郎舒妍,等. 智能无人潜水器技术发展研究[J]. 中国工程科学,2020,22(6):26-31.
    [2] 李硕, 吴园涛, 李琛, 等. 水下机器人应用及展望[J]. 中国科学院院刊, 2022, 37(7): 910-920.
    [3] 艳彤,郑荣,于闯.过渡目标值的非线性PID对自治水下机 器人变深运动的稳定控制[J].控制理论与应用,2018,35(8):1120-1125.
    [4] 何彦霖,董明利,孙广开,等.复合式驱动小型两栖机器人水下运动控制研究[J].仪器仪表学报,2019,40(1):219-226.
    [5] Rezazadegan F, Shojaei K, Sheikholeslam F, et al. A novel approach to 6-DOF Adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties[J]. Ocean Engineering, 2015, 107: 246-258.
    [6] Do K D, Jiang Z P, Pan J, et al. A global output-feedback controller for stabilization and tracking of underactuated ODIN: A spherical underwater vehicle[J]. Automatica, 2004, 40(1): 117-124.
    [7] Park B S. Neural network-based tracking control of underactuated autonomous underwater vehicles with model uncertainties[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(2): 021004.
    [8] Bessa W M, Dutra M S, Kreuzer E. An adaptive fuzzy sliding mode controllerFor remotely operated underwater vehicles[J]. Robotics and AutonomousSystems, 2010, 58(1): 16-26.
    [9] Shen C, Shi Y, Buckham B. Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5796-5805.
    [10] Kim M, Joe H, Kim J, et al. Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances[J]. International Journal of Control, 2015, 88(10): 2055-2065.
    [11] Zakeri E, Farahat S, Moezi S A, et al. Robust sliding mode control of a miniunmanned underwater vehicle equipped with a new arrangement of water jet propulsions: Simulation and experimental study[J]. Applied Ocean Research, 2016, 59: 521-542.
    [12] Yan Z, Yu H, Zhang W, et al. Globally finite-time stable tracking control of underactuated UUVs[J]. Ocean Engineering, 2015, 107: 132-146.
    [13] 李文魁,周铸,宦爱奇. 自主水下航行器自适应S面三维轨迹跟踪的仿真验证[J]. 中国舰船研究, 2022,17(4): 1673-1685.
    [14] Han J Q. From PID to active disturbance rejection control [J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
    [15] Gu N, Wang D, Peng Z H, et al. Disturbance observers and extended state observers for marine vehicles: A survey[J]. Control Engineering Practice, 2022, 123: 105158.
    [16] Fossen T I. Handbook of marine craft hydrodynamics and motion control[M]. New York:Wiley,2011.
    [17] Miao J F, Wang S P, Zhao Z P, et al. Spatial curvilinear path following control of underactuated AUV with multiple uncertainties[J]. ISA Transactions, 2017, 67: 103-130.
    [18] Fossen T I, Strand J P. Passive nonlinear observer designSforSshipsusingSlyapunovSmethods:Sfull-scaleSexperimentswithSaSsupplySvessel[J]. Automatica, 1999, 35(1): 3-16.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:64
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-23
  • 最后修改日期:2023-11-20
  • 录用日期:2023-11-21
文章二维码