基于扰动观测器的非奇异模糊滑模无人船编队控制
作者:
作者单位:

1.哈尔滨工业大学(威海) 信息科学与工程学院;2.山东省威海船舶技术服务中心

基金项目:

山东省自然科学基金面上项目 (No. ZR2020ME265, ZR2021ME155), 山东省科技型中小企业创新能力提升项目 (No. 2021TSGC1376, 2023TSGC0668), 山东省重点研发计划(2022ZLGX04)


Nonsingular fuzzy sliding-mode formation control for unmanned surface vehicles based on disturbance observer
Author:
Affiliation:

1.School of Information Science and Engineering, Harbin Institute of Technology,Weihai;2.Shandong Weihai Shipbuilding Technology Service Center

Fund Project:

Shandong Province Natural Science Foundation (No. ZR2020ME265,ZR2021ME155), Innovation Capability Improvement Project for Technology Oriented Small and Medium-sized Enterprises of Shandong Province (No. 2021TSGC1376,2023TSGC0668), the Key Research and Development Program of Shandong Province (2022ZLGX04)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | | | |
  • 文章评论
    摘要:

    【目的】本文针对含有模型参数不确定性、外界干扰与抖振现象的无人船编队问题,提出了一种基于扰动观测器的非奇异模糊终端滑模编队控制方法。【方法】首先,将领航者-跟随者与人工势场法相结合,获得无人船的编队构型并保证无碰撞现象;其次,基于Lyapunov能量函数设计出模糊控制规则,消除了控制器中的抖振问题;进而,提出了一种扰动观测器来补偿未知动态和外界干扰,增强了系统的鲁棒性和稳定性。【结果】通过理论分析和仿真结果验证了所提控制方法的有效性。【结论】基于所设计的编队控制方法,无人船最终可形成期望的编队构型。

    Abstract:

    [Objectives] Focusing on formation control problem with model parameter uncertainties, external disturbances and chattering phenomena, this paper presents a nonsingular fuzzy terminal sliding-mode formation control method based on disturbance observer. [Methods] Firstly, the leader-follower is combined with the artificial potential field method to achieve the formation configuration of unmanned surface vehicles while ensuring collision avoidance. Secondly, fuzzy control rules are designed based on Lyapunov energy function to eliminate chattering issues in the controller. Furthermore, a disturbance observer is proposed to compensate for unknown dynamics and external disturbances, which enhances the robustness and stability of the system. [Results] The effectiveness of the proposed control method is verified through theoretical analysis and simulation results. [Conclusions] Based on the designed formation control method, unmanned surface vehicles can ultimately achieve the desired formation configuration.

    参考文献
    [1] 胡建章, 唐国元, 王建军, 等. 水面无人艇集群系统研究[J].舰船科学技术, 2019, 41(4): 83-88.
    [2] 谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J].中国舰船研究, 2021, 16(1): 7-17.
    [3] 张婷婷, 蓝羽石, 宋爱国. 无人集群系统自主协同技术综述[J].指挥与控制学报, 2021, 7(2): 127-136.
    [4] Cui, R.X., Shuzhi, S.G., Bernard, V.E.H., et al. Leader–follower formation control of underactuated autonomous underwater vehicles[J]. Ocean Eng, 2010, 37(17), 1491-1502.
    [5] Balch, T., Arkin, R.C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation,1998, 14(6), 926-939.
    [6] Pashna, M., Yusof, R., Ismail, Z.H., et al. Autonomous multi-robot tracking system for oil spills on sea surface based on hybrid fuzzy distribution and potential field approach[J]. Ocean Eng, 2020, 207, 107238.
    [7] Do, K.D. Formation control of multiple elliptical agents with limited sensing ranges[J]. Automatica, 2012, 48(7), 1330-1338.
    [8] Peng, Z.H., Wang, J., Wang, D. Distributed?containment?maneuvering of multiple marine vessels via neurodynamics-based output feedback[J]. IEEE Trans. Ind. Electron, 2017, 64(5), 3831-3839.
    [9] Xu, J. Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints[J]. Automatica, 2016, 68, 228-236.
    [10] Yang, F., Fei, L., Liu, S.R., et al. Hybrid formation control of multiple mobile robots with obstacle avoidance[C]// 2010 8th World Congress on Intelligent Control and Automation, 2010, 1039-1044.
    [11] Barnes, L.E. A potential field-based formation control methodology for robot swarms[D]. ProQuest Dissertations and Theses University of South Florida, USA, 2008.
    [12] Yang, L., Yang, J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. Int. J. Robust Nonlinear Control, 2011 21(16), 1865-1879.
    [13] Chen, M., Shi, P., Lim, C.C. Robust constrained control for MIMO nonlinear systems based on disturbance observer[J]. IEEE Trans. Automat. Control, 2015 60(12), 3281-3286.
    [14] Qiao, L., Bowen, Y., Wu, D., et al. Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles[J]. Ocean Eng, 2017, 134.
    [15] Van, M. An enhanced robust fault tolerant control based on an adaptive fuzzy PID-nonsingular fast terminal sliding mode control for uncertain nonlinear systems[J]. IEEE-ASME Trans. Mechatron, 2018, 23(3), 1362-1371.
    [16] Cui, R.X., Zhang, X., Cui, D. Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities[J]. Ocean Eng. 2016, 123, 45-54.
    [17] Peng, Z.H., Wang, J. Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks[J]. IEEE Trans. Syst. Man Cybern. -Syst, 2018, 48(4), 535-544.
    [18] Van, M. An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer[J]. ISA Trans, 2019, 90, 30-40.
    [19] Lee, J.Y., Chang, P.H., Jin, M.L. Adaptive integral sliding mode control with time-delay estimation for robot manipulators[J]. IEEE Trans. Ind. Electron, 2017 64(8), 6796-6804.
    [20] Cui, R.X., Chen, L.P., Yang, C.G., et al. Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities[J]. IEEE Trans. Ind. Electron, 2017, 64(8), 6785-6795.
    [21] Kim, J.K., Joe, H., Yu, S.C., et al. Time-delay controller design for position control of autonomous underwater vehicle under disturbances[J]. IEEE Trans. Ind. Electron,2016, 63(2), 1052-1061.
    [22] Patre, B. M., Londhe, P. S., Nagarale, R. M. Fuzzy sliding mode control for spatial control of large nuclear reactor[J]. IEEE Trans. Nucl. Sci, 2015, 62(5), 2255-2265.
    [23] Kaynak, O., Erbatur, K., Ertugnrl, M. The fusion of computationally intelligent methodologies and sliding-mode control-a survey[J]. IEEE Trans. Ind. Electron, 2001, 48(1), 4-17.
    [24] Shahraz, A., Boozarjomehry, R.B. A fuzzy sliding mode control approach for nonlinear chemical processes[J]. Control Eng. Practice,2009, 17(5), 541-550.
    [25] Bessa, W.M., Dutra, M.S., Kreuzer, E. Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller[J]. Robot. Auton. Syst. 56(8), 670-677.
    [26] Bessa, W.M., Dutra, M.S., Kreuzer, E. An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles[J]. Robot. Auton. Syst, 2010, 58(1), 16-26.
    [27] Song, X., Zou, Z.J. A fuzzy sliding mode controller with adaptive disturbance approximation for underwater robot[C]// 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics, 2010, 50-53.
    [28] Wang, N., Gao, Y., Sun, Z., et al. Nussbaum-based adaptive fuzzy tracking control of unmanned surface vehicles with fully unknown dynamics and complex input nonlinearities[J]. Int. J. Fuzzy Syst, 2017, 20(1), 259-268.
    [29] Cao, L., Xiao, B., Golestani, M., et al. Faster fixed-time control of flexible spacecraft attitude stabilization[J]. IEEE Trans. Ind. Inform, 2020, 16(2), 1281-1290.
    [30] Wang, N., Zhu, Z., Qin, H., et al. Finite-time extended state observer-based exact tracking control of an unmanned surface vehicle[J]. Int. J. Robust Nonlinear Control, 2021, 31(5), 1704-1719.
    [31] Che, G., Yu, Z. Neural-network estimators based fault-tolerant tracking control for AUV via ADP with rudders faults and ocean current disturbance[J]. Neurocomputing, 2020, 411: 442-454.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:66
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-12
  • 最后修改日期:2023-09-30
  • 录用日期:2023-10-07
文章二维码