基于CFD方法的十字形降落伞–航行体系统数值分析
作者:
作者简介:

耿文豹(1982-),男,博士,副教授,主要从事水下机器人相关研究。

中图分类号:

V244.21

基金项目:

国家自然科学基金面上项目“基于声数据机器学习的辽东湾斑海豹时空分布与海冰变化关系研究”(42276141)


Numerical Analysis of Cross Parachute-vehicle System Based on CFD Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究航行体对十字形降落伞流场和阻力性能的影响,基于 Realizable k–ε 模型采用 PISO 算法开展了十字形降落伞–航行体系统的非定常绕流数值计算,得到了详细的流场计算结果。研究了不同拖曳比下十字形降落伞–航行体系统的流场分布规律与降落伞衣及航行体的气动特性变化,结果表明:当拖曳比 λ≤2 时, 航行体和降落伞衣形成闭式流动,降落伞衣阻力损失严重;当拖曳比 λ>2 时,航行体尾流区的压力恢复,降落伞衣底部形成稳定的正压区,流动形式由闭式转化为开式,拖曳比 λ 最大时的压差 Δp 相较拖曳比最小时的压差增加 12%,降落伞衣阻力恢复,阻力波动减小;当拖曳比 λ=4 时,降落伞与航行体的阻力分别增加 1.8%、 25%。结果显示十字形降落伞–航行体系统的流场和压力分布更为对称,且气动特性处于最佳状态。

    Abstract:

    In order to study the impact of the vehicle on flow field and drag performance of the cross parachute,the PISO algorithm is used to conduct numerical calculations of the unsteady flow around the cross parachute-vehicle system based on Realizable k-ε model,and detailed flow field calculation results are obtained. Flow field distribution rules of the cross parachute-vehicle system and changes in aerodynamic characteristics of the parachute and the vehicle under different trailing distances are studied. The results show that when towing ratio λ is no larger than 2,the vehicle and the parachute form a closed flow,and drag loss of the parachute is serious. When towing ratio λ is larger than 2,the pressure in the wake area of the underwater vehicle recovers,a stable positive pressure area is formed at the bottom of the parachute,and the flow form gradually changes from closed to open. When trailing distance λ changes from the minimum to the maximum, the pressure difference Δp increases by 12%. Resistance of the parachute is restored and resistance fluctuation is reduced. When towing ratio λ is 4,resistance of the parachute and the vehicle increases by 1.8% and 25% respectively. Velocity and pressure contours show that the flow field and pressure distribution of the cross parachute-vehicle system are more symmetrical and the aerodynamic characteristics are in the best state.

    参考文献
    [1] 孙庆鹏,黄宏友,田彬.AUV 远距离快速布放方法研究[J].数字海洋与水下攻防,2020,3(4):333-338.
    [2] 李兵.鱼雷用降落伞设计技术[J].鱼雷技术,2004(3):37-40.
    [3] 曹红松,冯顺山,张宏飞,等.伞弹系统外流场数值仿真方法研究[J].测试技术学报,2006(5):451-455.
    [4] 白春华,李建平.航弹尾流场数值模拟及柔性开舱可靠性分析[J].北京理工大学学报,2005(7):585-589.
    [5] 简相辉,金哲岩.降落伞工作过程数值模拟研究综述 [J].航空科学技术,2016,27(10):1-7.
    [6] YU L,CHENG H,ZHAN Y N,et al.Study of parachute inflation process using fluid-structure interaction method[J].Chinese Journal of Aeronautics,2014,27(2):272-279.
    [7] 王侃,曹义华,于子文,等.降落伞流固耦合问题的数值模拟和流场分析[J].北京航空航天大学学报,2007(9):1029-1032.
    [8] FAGLEY C P,SEIDEL J,MCLAUGHLIN T E,et al.Computational study of air drop control mechanisms for cruciform parachutes[C]//24th AIAA Aerodynamic Decelerator Systems Technology Conference.Denver:U.S.Air Force Academy,2017.
    [9] POTVIN J,PEEK G,BROCATO B,et al.Inflation and glide studies of slider-reefed cruciform parachutes[C]//16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Boston:Saint Louis University,2001.
    [10] 吴卓恒,余莉,赵晓舜,等.前体尾流对降落伞工作性能的影响[J].北京航空航天大学学报,2021,47(12):2552-2559.
    [11] SATHE S,BENNEY R,CHARLES R,et al.Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques[J].Computers & Fluids,2007,36(1):127-135.
    [12] CHENG H,YU L,RONG W,et al.A numerical study of parachute inflation based on a mixed method[J].Aviation,2012,16(4):115-123.
    [13] FOGELL N A,SHERWIN S,COTTER C J,et al.Fluid-structure interaction simulation of the inflated shape of ram-air parachutes[C]//AIAA Aerodynamic Decelerator Systems(ADS)Conference.Daytona Beach:American Institute of Aeronautics and Astronautics,2013.
    [14] BROCATO B,ESTEVE L,GARCIA D,et al.Experimental study of fluid-structure interactions on a cross parachute-comparison of wind tunnel data and drop data with CFD predictions[C]//15th Aerodynamic Decelerator Systems Technology Conference.Toulouse:Saint Louis University,1999.
    [15] LINGARD J,DARLEY M.Simulation of parachute fluid structure interaction in supersonic flow[C]//18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Munich:American Institute of Aeronautics and Astronautics,2005.
    [16] LINGARD J,DARLEY M,UNDERWOOD J,et al.Simulation of the Mars science laboratory parachute performance and dynamics[C]//19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Williamsburg:American Institute of Aeronautics and Astronautics,2007.
    [17] 李晓勇,曹义华,蒋崇文,等.降落伞稳定下降阶段流场的数值模拟[J].航天返回与遥感,2004,25(2):5-9.
    [18] 王利荣.降落伞理论与应用[M].北京:宇航出版社,1997.
    [19] FINNEMORE E J,FRANZINI J B.流体力学及其工程应用[M].北京:清华大学出版社,2003.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

耿文豹,周石,洪树峰,等.基于CFD方法的十字形降落伞–航行体系统数值分析[J].数字海洋与水下攻防,2023,6(6):719-725

复制
分享
文章指标
  • 点击次数:41
  • 下载次数: 401
  • HTML阅读次数: 69
  • 引用次数: 0
历史
  • 收稿日期:2023-09-19
  • 在线发布日期: 2023-12-29
文章二维码