基于柔顺机构的双驱动仿生水母设计
作者:
作者单位:

1.西安交通大学机械工程学院;2.西安交通大学 机械工程学院

基金项目:

中国大学生创新创业训练项目


Design of Dual-drive Bionic Jellyfish Based on Compliant Mechanism
Author:
Affiliation:

1.School of Mechanical Engineering, Xi'2.'3.an Jiaotong University

Fund Project:

College Students’ innovation and entrepreneurship training program

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • | | | |
  • 文章评论
    摘要:

    水母以其高效的运动性能和灵活的感知功能,近年来在仿生学领域受到了广泛关注,可广泛应用于海洋探测和环境治理等领域。基于仿生学原理,从模拟水母的运动特性和趋光功能的角度出发,提出了一款双驱动的仿生水母,通过基于柔性机构的仿生鳍条实现水中扑动推进,通过基于管状折纸机构实现水下喷射推进,通过双驱动结构的协同驱动设计,有效提升水母推进效率。实验结果表明,双驱动模式下的仿生水母推进效率更高,摆动推进和喷射推进的最大推进力之比约为2.7:1,最大运行速度可达100mm/s,能够实现灵活的水下全向运动。模拟水母趋光特性,结合机器学习算法构建趋光控制系统,能够实现水下的趋光运动。

    Abstract:

    Jellyfish has attracted extensive attention in the field of bionics in recent years due to its efficient motion performance and flexible sensory function. It can be widely used in marine exploration and environmental governance and other fields. Based on the principles of bionics, a dual-drive bionic jellyfish is developed from the perspective of simulating the movement characteristics and phototaxis motion of jellyfish, with flutter propulsion from bionic fin rays based on flexible structure and jet propulsion from tubular origami mechanism. The propulsion efficiency of jellyfish is effectively improved through the coordinated drive design of the double drive structure. The experimental results show that the bionic jellyfish propulsion efficiency is higher under the double drive mode. The propulsion force ratio between oscillating propulsion and jet propulsion is about 2.7:1, and the maximum operating speed can reach 100mm/s. It can realize flexible underwater omnidirectional movement. Simulating the phototaxis characteristics of jellyfish, a phototaxis control system combined with machine learning algorithms can realize underwater phototaxis movement.

    参考文献
    [1] 迟冬祥, 颜国正. 仿生机器人的研究状况及其未来发展[J]. 机器人. 2001(05):476-480
    [2] M. Sfakiotakis, M. D. Lane, J. Davies, et al. Review of fish swimming modes for aquatic locomotion, IEEE J Ocean Eng, 1999, 24: 237-252
    [3] 李雪琪. 论仿生设计在现代创新设计中的应用 [D]. 大连理工大学 2017.4.1.
    [4] G. Tortora, S. Caccavaro, P. Valdastri, et al. Design of an autonomous swimming miniature robot based on a novel concept of magnetic actuation, 2010 IEEE International Conference on Robotics and Automation, 2010: 1592-1597.
    [5] S. Bressers, S. Chung, A. Villanueva, et al. JetSum: SMA Actuator Based Undersea Unmanned Vehicle Inspired by Jellyfish Bio-mechanics, Behavior and Mechanics of Multifunctional Materials and Composites, 2010: 7644.
    [6] FESTO. Bionic Learning Network: Inspired by Nature (Press Release No. Tc06/08), 2008
    [7] 肖俊东,喻俊志. 基于多连杆机构的仿生机器水母设计与实现[C]//中国自动化学会控制理论专业委员会,中国系统工程学会.第三十二届中国控制会议论文集(D卷).[出版者不详],2013:6.
    [8] 吕添,苏伟.基于鳍条效应的仿生机械手设计[J].机械设计, 2021, 38(12): 2124. DOI: 10. 13841./j. cnki. jxsj. 2021. 12. 003
    [9] 程亮亮. 基于管状折纸结构的仿乌贼水下机器人设计、分析与实验[D]. 江西理工大学, 2020. DOI: 10. 27176/d. cnki.gnfyc.2020.000066.
    [10] 张程程. 基于折纸结构的软体机器人设计与实验研究[D].苏州大学, 2020. DOI: 10. 27351/d. cnki. gszhu. 2020. 003304.
    [11] 郭冠群. 基于重心调节的水下机器人—机械手系统姿态控制技术研究[D].哈尔滨工程大学,2016.
    [12] Swagat Chutia, Nayan M. Kakoty, Dhanapati Deka. 2017. A Review of Underwater Robotics, Navigation, Sensing Techniques and Applications. In Proceedings of the Advances in Robotics (AIR ''17). Association for Computing Machinery, New York, NY, USA, Article 8, 1–6.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:52
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-31
  • 最后修改日期:2023-06-08
  • 录用日期:2023-07-04
文章二维码