面向水下无线传感器网络的介电弹性体能量收集技术研究(题目不超过20)
作者:
作者单位:

1.西安交通大学 航天航空学院;2.西安交通大学 机械工程学院

基金项目:

国家自然科学(12202340)。


Research on dielectric elastomer-based energy harvesting technology for underwater wireless sensor networks
Author:
Affiliation:

1.School of Aerospace Engineering,Xi’an JiaoTong University,Xi’an;2.School of Mechanical Engineering,Xi’an JiaoTong University,Xi’an

Fund Project:

National Natural Science Foundation of China (12202340)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    水下无线传感器网络为海洋资源勘探、海洋灾害预警、海洋权益维护和海洋安全防御等提供了重要助力。然而,利用传统蓄电池对传感器进行供电的方式,需要定期充电或更换蓄电池,难以保证长时间持续可靠工作,介电弹性体能量收集技术原位供电成为解决这一难题的有效途径。目前,面向水下能量收集的介电弹性体发电机(DEG)存在能量收集性能低的问题,针对该问题,通过构建的DEG理论模型,研究不同参数下DEG的动态响应和能量收集性能,以探究提高其能量收集性能的方法。结果表明,增大负载电阻或提高DEG拉升阶段在其周期中所占时间比可以增强其能量密度。研究结果能够为增强介电弹性体水下能量收集性能提供新途径。

    Abstract:

    Underwater wireless sensor networks can provide support for marine resource exploration, marine disaster warning, maintenance of maritime rights and interests, and marine security defense. However, the traditional way of using batteries to power the sensors requires termly charging or replacing them, and it is difficult to ensure the continuous and reliable work for a long time. The dielectric elastomer-based energy harvesting technology can solve the in-situ power supply problem. Due to the problem that the dielectric elastomer generators (DEGs) output less electrical energy in underwater energy harvesting, the dynamic response and energy harvesting performance of the DEG is investigated by the developed theorical model to explore the effective method for performance improvement. Results show that increasing the load resistance or time ratio of the stretching process in a cycle period can improve the energy density of the DEG. The conclusion can prove guidance for optimizing the DEG to enhance the performance in underwater energy harvesting.

    参考文献
    [1] 苏毅珊, 张贺贺, 张瑞,等. 水下无线传感器网络安全研究综述[J]. 电子与信息学报, 2023, 45(3):1121-1133.
    [2] 刘翔宇, 王岩, 王昊,等. 基于柔性摩擦纳米发电机的水下能量收集技术研究[J]. 水下无人系统学报, 2022, 30(5):543-549.
    [3] 张宇, 王昊, 相城, 等. 面向观测网络供电的水下能量捕获技术研究进展 [J]. 水下无人系统学报, 2023, 31(1): 86-107
    [4] Huang Y, Liu D, Zhu T, et al. A mechanically tunable electromagnetic wave harvester and dual-modal detector based on quasi-static van der Waals heterojunction [J]. Nano Energy, 2022, 99: 107399.
    [5] Zou D, Liu G, Rao Z, et al. Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations [J]. Applied Energy, 2021, 302: 117585.
    [6] Jing T, Xu B, Yang Y. Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles [J]. Nano Energy, 2021, 84: 105867.
    [7] Fan P, Zhu L, Zhu Z, et al. Predicting energy harvesting performance of a random nonlinear dielectric elastomer pendulum [J]. Applied Energy, 2021, 289(116696.
    [8] Pelrine R, Kornbluh RD, Eckerle J, et al. Dielectric elastomers: generator mode fundamentals and applications[C] //Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices. International Society for Optics and Photonics, 2001, 4329: 148-157.
    [9] Chiba S, Waki M, Kornbluh R, et al. Current status and future prospects of power generators using dielectric elastomers[J]. Smart Materials and Structures, 2011, 20(12): 124006.
    [10] Chiba S, Waki M, Wada T, et al. Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators[J]. Applied Energy, 2013, 104: 497-502.
    [11] Jean P, Wattez A, Ardoise G, et al. Standing wave tube electro active polymer wave energy converter[C] //Electroactive Polymer Actuators and Devices (EAPAD) 2012. International Society for Optics and Photonics, 2012, 8340: 83400C.
    [12] Moretti G, Papini GPR, Righi M, et al. Resonant wave energy harvester based on dielectric elastomer generator[J]. Smart Materials and Structures, 2018, 27(3): 035015.
    [13] Moretti G, Fontana M, Vertechy R. Model-based design and optimization of a dielectric elastomer power take-off for oscillating wave surge energy converters[J]. Meccanica, 2015, 50(11): 2797-2813.
    [14] Foo CC, Koh SJA, Keplinger C, et al. Performance of dissipative dielectric elastomer generators[J]. Journal of Applied Physics, 2012, 111(9): 094107.
    [15] Hong W. Modeling viscoelastic dielectrics[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(3): 637-650.
    [16] Foo CC, Cai S, Koh SJA, et al. Model of dissipative dielectric elastomers[J]. Journal of Applied Physics, 2012, 111(3): 034102.
    [17] Gent AN. A new constitutive relation for rubber[J]. Rubber Chem Technol, 1996, 69(1): 59-61.
    [18] Fan P, Chen H. Optimizing the Energy Harvesting Cycle of a Dissipative Dielectric Elastomer Generator for Performance Improvement [J]. Polymers, 2018, 10(12): 1341.
    [19] Zhou J, Jiang L, Khayat RE. Methods to improve harvested energy and conversion efficiency of viscoelastic dielectric elastomer generators[J]. Journal of Applied Physics, 2017, 121(18): 184102.
    [20] Huang J, Shian S, Suo Z, et al. Maximizing the Energy Density of Dielectric Elastomer Generators Using bEqui‐Biaxial Loading[J]. Advanced Functional Materials, 2013, 23(40): 5056-5061.
    [21] Fan P, Chen H. Performance investigation of a dissipative dielectric elastomer generator by the damping model [J]. Applied Physics A, 2018, 124(2): 148.
    [22] Fan P, Chen H, Li B, et al. Performance investigation on dissipative dielectric elastomer generators with a triangular energy harvesting scheme [J]. EPL, 2017, 120(4): 47007.
    [23] Fan P, Zhu Z , Hu Q. Investigation on free relaxation process influencing energy harvesting performance of dielectric elastomer generators in intermittent motion[J]. Sensors and Actuators A: Physical, 2022, 347: 113588.
    [24] Zhou J, Jiang L and Khayat R E 2015 Investigation on the performance of a viscoelastic dielectric elastomer membrane generator Soft matter 11 2983-92.(网络文献)
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:47
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-31
  • 最后修改日期:2023-06-07
  • 录用日期:2023-07-04
文章二维码