基于复合传感器的机器鱼推进力预测方法研究
DOI:
作者:
作者单位:

1.中国舰船研究设计中心;2.西安交通大学教育部现代设计与转子轴承重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

基于柔性被动自由度感知增强的仿蝠鲼机器鱼协调控制研究


Research on propulsion prediction method of machine fish based on composite sensor
Author:
Affiliation:

1.China Ship Research and Design Center;2.Key Laboratory Education Ministry Modern Design and Rotor Bearing, Xi'3.'4.an Jiaotong University

Fund Project:

Research on coordinated control of bionic manta ray robotic fish based on perception enhancement of flexible passive degree of freedom

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    复杂多变的水下环境会极大的干扰仿生机器鱼的正常运动和对水下信息的感知,而鱼鳍的变形在产生推进力方面发挥了关键作用。但目前对于鱼鳍如何利用自身感觉信息来对推进力进行识别和预测的研究甚少。为了解决这一问题,通过在一个柔性传感器上集成压电层和压阻层,研制出基于压电/压阻双传感模式的柔性仿鱼鳍复合传感器,并提出了一种基于复合传感器对鱼鳍产生的推进力预测的方法。建立了基于BP人工神经网络的推进力预测模型并进行训练,通过皮尔逊相关分析法对输入层数据进行筛选和优化,提高了模型的预测精度。实验结果证明基于BP神经网络及皮尔逊相关性分析的多传感层组合的推进力预测是有效可行的,同时为机器鱼水下感知能力的提升提供了新的途径。

    Abstract:

    The complex and variable underwater environment can greatly interfere with the normal movement and perception of underwater information of bionic robotic fish, and the deformation of fins plays a key role in generating propulsive force. However, little research has been conducted on how fins use their sensory information to identify and predict propulsive force. In order to solve this problem, a flexible fish fin-like composite sensor is developed, which based on piezoelectric/piezoresistive dual sensing mode, and produced by integrating a piezoelectric and piezoresistive layer on a flexible sensor, and a method is proposed to predict the propulsive force generated by the fish fin based on the composite sensor. A propulsive force prediction model is established and trained, which is based on BP artificial neural network , and the prediction accuracy of the model is improved by screening and optimizing the input layer date through Pearson correlation analysis. The experimental results demonstrate that the propulsive force prediction is effective and feasible, which based on BP neural network and Pearson correlation analysis for the combination of multiple sensing layers, and also provides a new way to improve the underwater sensing capability of the machine fish.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-31
  • 最后修改日期:2023-06-19
  • 录用日期:2023-06-26
  • 在线发布日期:
  • 出版日期: