多仿生机器人协同编队捕获策略
作者单位:

北京理工大学


Collaborative Formation Capture Strategy for Multiple Biomimetic Robot
Author:
Affiliation:

Beijing Institute of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    机器人的协同编队问题是一个综合性的研究课题,主要包括编队策略及路径规划两个阶段。针 对单一机器人在未知水下环境中执行任务时能源受限等问题,本文提出一种基于改进蚁群算法的安全域协商 捕捉策略,来解决多仿生机器人系统水下环境中对目标的协同编队捕获问题。机器人随机搜索过程中发现目 标后,利用安全域协商策略实现目标机器人周围捕获点的分配;采用改进的蚁群算法实现编队过程的路径规 划和自适应避障。在不同大小的障碍物环境中进行仿真实验,并与经典的编队策略和路径规划算法进行对比, 实验结果表明,所提出策略能够使机器人在复杂的水下障碍物环境中完成高效的协作编队捕捉任务,具备有 效性。

    Abstract:

    The collaborative formation problem of robots is a comprehensive research topic, which mainly includes two stages: formation strategy and path planning. This paper proposes a security domain negotiation capture strategy based on an improved ant colony algorithm to address the energy constraints of a single robot executing tasks in an unknown underwater environment, in order to solve the problem of collaborative formation capture of targets in multiple biomimetic robot systems in underwater environments. After discovering the target during the robot's random search process, a secure domain negotiation strategy is used to allocate capture points around the target robot; Using an improved ant colony algorithm to achieve path planning and adaptive obstacle avoidance during the formation process. Simulation experiments were conducted in obstacle environments of different sizes, and compared with classic formation strategies and path planning algorithms. The experimental results showed that the proposed strategy can enable robots to complete efficient collaborative formation capture tasks in complex underwater obstacle environments, with effectiveness.

    参考文献
    [1] 陈世健,陈宏,丁贺等.基于Bug2和角度优先的多AUV围捕策略[J].自动化与信息工程,2021,42(01):18-21.
    [2] L. Shi, S. Guo and K. Asaka, "A novel butterfly-inspired underwater microrobot with pectoral fins," 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 2011, pp. 853-858.
    [3] L. Shi, S. Guo and K. Asaka, "A novel multifunctional underwater microrobot," 2010 IEEE International Conference on Robotics and Biomimetics, Tianjin, China, 2010, pp. 873-878.
    [4] 石立伟,鲍鹏筱,陈占等.水下球形机器人视觉防碰撞编队策略[J].兵工自动化,2022,41(10):79-83+87.
    [5] 陈铭治,朱大奇.FMM与改进GBNN模型相结合的多AUV实时围捕算法[J].控制与决策,2020,35(12): 2845-2854.
    [6] J. Ni, S. Yang. Bio?inspired neural network for real?time cooperative hunting by multi?robots in unknown environments [J]. IEEE transactions on neural networks, 2011, 22(12):2062?2077.
    [7] 赵文瑜.基于Bug算法的移动机器人路径规划研究[J].无线互联科技,2020,17(06):125-126.
    [8] Yu, F., Shang, H., Zhu, Q. et al. An efficient RRT-based motion planning algorithm for autonomous underwater vehicles under cylindrical sampling constraints. Auton Robot 47, 281–297 (2023).
    [9] 刘云辉,石永康.未知环境下多无人机协同搜索与围捕策略研究[J].现代电子技术,2023,46(06):98-104.
    [10] 陈阳舟,王文星,代桂平.基于角度优先的多机器人围捕策略[J].北京工业大学学报,2012,38(05):716-720.
    [11] 裴惠琴,陈世明等.动态环境下可扩展移动机器人群体的围捕控制[J].信息与控制,2009,38(4):437- 443.
    [12] 胡俊,朱庆保.基于动态预测目标轨迹和围捕点的多机器人围捕算法[J].电子学报,2011,39(11):2480-2485.
    [13] 李瑞珍,杨惠珍,萧丛杉.基于动态围捕点的多机器人协同策略[J].控制工程,2019,26(03):510-514.
    [14] 宋利飞,徐凯凯,史晓骞等.多无人艇协同围捕智能逃跑目标方法研究[J].中国舰船研究,2023,18(01):52-59.
    [15] LIU C, ZHAO Y, GAO F, et al. Three-Dimensional Path Planning Method for Autonomous Underwater Vehicle Based on Modified Firefly Algorithm[J]. Mathematical Problems in Engineering,2015(11):1-10.
    [16] 黄永良,李燕,张小龙.基于改进蚁群算法的机器人路径规划[J].电脑与信息技术,2023,31(02):1-4.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:123
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-30
  • 最后修改日期:2023-06-07
  • 录用日期:2023-07-04
文章二维码