基于斯托克斯参量的水下主动偏振去散射研究
作者单位:

西安交通大学

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Underwater Active Polarization Descattering Based on Stokes Vectors
Affiliation:

Xi’an Jiaotong University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • | | | |
  • 文章评论
    摘要:

    受浑浊水体自身吸收与微颗粒散射的影响,水下光学成像面临成像距离短、像质差的问题。本文将一种改进的主动偏振成像模型引入到水下成像去散射过程中,有效提升了探测的清晰度。相比于被动偏振成像模型,主动光源可以对入射光并 进行偏振调制,由此可以充分利用目标反射光与介质光的偏振特征差异进行分离选通。改进的主动去散射模型基于反射型目标反射光的偏振共模抑制效应,充分利用偏振斯托克矢参量S2分量,屏蔽目标信息干扰,进而准确重建介质光偏振度分布。以此同时将水下图像评价指标contrast作为反馈参量以实现背景噪声的最大化滤除。不同浑浊度水体中多目标类型的成像实验表明本文所提出的新方法相比于经典主动偏振成像方法,在噪声抑制与成像质量方面均 实现显著提升,特别是强散射环境下的成像contrast提升超过2倍以上。该项工作进一步拓展了利用偏振信息进行水下图像去散射的可行性,也证明了主动偏振成像技术在散射水体目标探测的重要应用价值。

    Abstract:

    Affected by the scattering of micro-particles in turbid water, optical imaging faces the problems of short imaging distance and poor image quality. In this paper, an improved active polarization imaging method is introduced into the descattering process to achieve higher imaging contrast. Compared with the passive polarization imaging model, the introduction of an active light source can perform polarization modulation on the incident light, which better serves the underwater optical transmission model to separate and solve the target information. For the first time, the S2 component of Stokes vectors based on the common mode suppression is used to eliminate the interference of the target information. Therefore, the polarization degree of backscattered light is accurately reconstructed. Meanwhile, introducing contrast as feedback optimization is to achieve determination of optimal parameters. The imaging experiments with different types of targets prove the effectiveness of the method under various turbidities water. Especially at strong scattering water, the imaging contrast is improved by more than 2 times. It is of great scientific value to introduce the polarization information into the enhancement and restoration of the target information.

    参考文献
    [1] JAFFE J S. Underwater Optical Imaging: The Past, the Present, and the Prospects [J]. IEEE J Ocean Eng, 2015, 40(3): 683-700.
    [2] LIU F, HAN P, WEI Y, et al. Deeply seeing through highly turbid water by active polarization imaging [J]. Opt Lett, 2018, 43(20): 4903-6.
    [3] TREIBITZ T, SCHECHNER Y Y. Active polarization descattering [J]. IEEE Trans Pattern Anal MachIntell, 2009, 31(3): 385-99.
    [4] SCHETTINI R, CORCHS S. Underwater Image Processing: State of the Art of Restoration and Image Enhancement Methods [J]. EURASIP J Adv Signal Process, 2010, 2010(1).
    [5] CHIANG J Y, CHEN Y C. Underwater image enhancement by wavelength compensation and dehazing [J]. IEEE Trans Image Process, 2012, 21(4): 1756-69.
    [6] LI X B, HAN Y L, WANG H Y, et al. Polarimetric Imaging Through Scattering Media: A Review [J]. Front Phys, 2022, 10.
    [7] HE K, SUN J, TANG X. Single Image Haze Removal Using Dark Channel Prior [J]. IEEE Trans Pattern Anal MachIntell, 2011, 33(12): 2341-53.
    [8] AMER K O, ELBOUZ M, ALFALOU A, et al. Enhancing underwater optical imaging by using a low-pass polarization filter [J]. Opt Express, 2019, 27(2): 621-43.
    [9] TANG A. A Restoration of Underwater Polarized Images Based on DCP [Z]. 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). 2019: 675-8.10.1109/sdpc.2019.00127
    [10] CHEN X, JIN M, CHEN H, et al. Computational temporal ghost imaging for long-distance underwater wireless optical communication [J]. Opt Lett, 2021, 46(8): 1938-41.
    [11] SCHECHNER Y Y, KARPEL N. Recovery of Underwater Visibility and Structure by Polarization Analysis [J]. IEEE J Ocean Eng, 2005, 30(3): 570-87.
    [12] LI X B, XU J N, ZHANG L P, et al. Underwater image restoration via Stokes decomposition [J]. Opt Lett, 2022, 47(11): 2854-7.
    [13] HU H, ZHANG Y, LI X, et al. Polarimetric underwater image recovery via deep learning [J]. Opt Lasers Eng, 2020, 133.
    [14] REN Q M, XIANG Y F, WANG G C, et al. The underwater polarization dehazing imaging with a lightweight convolutional neural network [J]. Optik, 2022, 251.
    [15] HU H F, HAN Y L, LI X B, et al. Physics-informed neural network for polarimetric underwater imaging [J]. Opt Express, 2022, 30(13): 22512-22.
    [16] HU H, ZHAO L, LI X, et al. Underwater Image Recovery Under the Nonuniform Optical Field Based on Polarimetric Imaging [J]. IEEE Photonics J, 2018, 10(1): 1-9.
    [17] HU H, ZHAO L, HUANG B, et al. Enhancing Visibility of Polarimetric Underwater Image by Transmittance Correction [J]. IEEE Photonics J, 2017, 9(3): 1-10.
    [18] HUANG B, LIU T, HU H, et al. Underwater image recovery considering polarization effects of objects [J]. Opt Express, 2016, 24(9): 9826-38.
    [19] JIN L, HONG L. Deep learning for underwater image recognition in small sample size situations; proceedings of the Oceans, F, 2017 [C].
    [20] HAN P, LIU F, WEI Y, et al. Optical correlation assists to enhance underwater polarization imaging performance [J]. Opt Lasers Eng, 2020, 134: 106256.
    [21] DUBREUIL M, DELROT P, LEONARD I, et al. Exploring underwater target detection by imaging polarimetry and correlation techniques [J]. Appl Opt, 2013, 52(5): 997-1005.
    [22] ZHANG H, REN M, WANG H, et al. Fast processing of underwater polarization imaging based on optical correlation [J]. Appl Opt, 2021, 60(15): 4462-8.
    [23] GUAN J-G, YONG Z, YONG-QIU Z, et al. Optical polarization imaging for underwater target detection with non-scatter background [J]. Journal of Measurement Science & Instrumentation, 2020, 11(4).
    [24] HU H, LI J, LI X, et al. Underwater Polarization Difference Imaging with Three Degrees of Freedom [J]. Acta Optica Sinica, 2021, 41(3).
    [25] YANG S L, QU B W, LIU G S, et al. Unsupervised learning polarimetric underwater image recovery under nonuniform optical fields [J]. Appl Opt, 2021, 60(26): 8198-205.
    [26] YU T, WANG X L, XI S X, et al. Underwater polarization imaging for visibility enhancement of moving targets in turbid environments [J]. Opt Express, 2023, 31(1): 459-68.
    [27] ZHAO Y Z, HE W J, REN H, et al. Polarization descattering imaging through turbid water without prior knowledge [J]. Opt Lasers Eng, 2022, 148.
    [28] LIANG J, JU H, REN L, et al. Generalize d Polarimetric Dehazing Method Based on Low-Pass Filtering in Frequency Domain [J]. Sensors (Basel), 2020, 20(6).
    [29] TIAN H, ZHU J, TAN S, et al. Rapid underwater target enhancement method based on polarimetric imaging [J]. Opt Laser Technol, 2018, 108: 515-20.
    [30] PANETTA K A, WHARTON E J, AGAIAN S S. Human Visual System-Based Image Enhancement and Logarithmic Contrast Measure [J]. IEEE Trans Syst Man Cybern Part B Cybern, 2008, 38(1): 174-88.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:110
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-26
  • 最后修改日期:2023-06-05
  • 录用日期:2023-07-07
文章二维码