微分有限元海缆磁异常探测方法研究
作者:
作者简介:

石杰栋(1996-),男,硕士,助理工程师,主要从事磁隐身研究。

中图分类号:

P631.2+24


Research on Magnetic Anomaly Detection for Submarine Cables Based on Differential Finite Element Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    海缆在长久的电力信息输送过程中,损坏故障等突发事故经常发生,研究海缆在地磁背景下环境周围产生磁异常扰动信号,确定海底海缆轨迹和埋设深度,能够在突发状况之后迅速针对该区域内的海缆进行定位,及时对海缆进行维修。基于微元磁偶极子有限元仿真建立海缆磁场模型,探究了检测距离(DCPA)、海缆长度(L)、背景磁场对海缆磁异常特性的影响规律。通过研究可知:DCPA<L 时衰减指数约为–2,3L>DCPA>L 时衰减指数约为–2.8,DCPA>3L 时衰减指数约为–3;DCPA 固定时,海缆磁异常随长度明显增加到一定程度会趋向稳定,信号发生畸变;背景磁场分量改变不仅可能改变海缆磁异常信号的强度,还可能改变其信号波形特征。

    Abstract:

    In the process of long-term power information transmission of submarine cables,sudden accidents such as damage and failure often occur. By studying the magnetic abnormal disturbance signals generated by submarine cables in geomagnetic background,the trajectory and buried depth of submarine cables can be determined,and the submarine cables can be quickly located in the area after the sudden situation,and the submarine cables can be repaired in time. The magnetic field model of the submarine cable is established based on the finite element simulation of microelement magnetic dipole,and the influence of detection distance(DCPA),cable length (L)and background magnetic field on the magnetic anomaly characteristics of the submarine cable is explored. It can be seen from the study that when DCPA <L,3L >DCPA >LDCPA >3L,the attenuation index is about –2,–2.8,–3 respectively. When DCPA is fixed,the cable magnetic anomaly tends to be stable with the increase of the cable length to a certain extent,and the signal distorts. The change of the background magnetic field component may not only change the strength of magnetic anomaly signal of the submarine cable,but also change the signal waveform characteristics.

    参考文献
    [1] SHEN Y,WANG J Z,SHI J D,et al.Interpretation of signature waveform characteristics for magnetic anomaly detection using tunneling magnetoresistive sensor[J].Journal of Magnetism and Magnetic Materials,2019,484:164-171.
    [2] GAO J Q,WANG J Z,ZHANG L Z,et al.Magnetic signature analysis for smart security system based on TMR magnetic sensor array[J].IEEE Sensors Journal,2019,19(8):1-1.
    [3] SZYROWSKI T,SHARMA S K,SUTTON R,et al.Subsea cable tracking in an uncertain environment using particle filters[J].Journal of Marine Engineering & Technology,2015,14(1):19-31.
    [4] SZYROWSKI T,SHARMA S K,SUTTON R,et al.Developments in subsea power and telecommunication cables detection:part 2–electromagnetic detection[J].Underwater Technology the International Journal of the Society for Underwater,2013,31(3):123-132.
    [5] PEI Y H,YEO H G,KANG X Y,et al.Magnetic gradiometer on an AUV for buried object detection[C]//Oceans 2010 MTS/IEEE.Seattle:IEEE,2010.
    [6] JACOBI M,KARIMANZIRA D.Underwater pipeline and cable inspection using autonomous underwater vehicles[C]//Oceans 2013 MTS/IEEE.Bergen:IEEE,2013.
    [7] 牛泽民.基于磁信号引导的水下机器人海缆自动跟踪技术研究[D].武汉:华中科技大学,2016.
    [8] 杨敏,宋湦,王芳.掩埋海底管道探测方法及新技术应用研究[J].海洋科学,2015,39(6):129-132.
    [9] 王艳.海缆路由探测中浅地层剖面仪的现状及应用 [J].物探装备,2011(3):145-149.
    [10] SHEN Y,HASANYAN D,GAO J,et al.A magnetic signature study using magnetoelectric laminate sensors[J].Smart Materials and Structures,2013,22(9):095007.
    [11] 李晶.海底电缆外部探测方法与应用浅析[J].水道港口,2018,39(3):365-369.
    [12] 周路遥,刘黎,蒋愉宽.光纤分布式传感技术在海底电缆状态监测中的应用[J].浙江电力,2018,37(2):6-10.
    [13] 于灏,王培刚,段康弘.合成孔径声纳技术在海底管道探测中的应用进展[J].海洋测绘,2015,35(3):20-23.
    [14] 王雷.海底电缆故障点检测定位技术的研究应用 [C]//第十三届中国科协年会海洋工程装备发展论坛暨2011年海洋工程学术年会论文集.北京:中国造船工程学会,2011.
    [15] 谢锏辉,刘书胜,崔宁.一种探测海底电缆埋深的后调查方法[J].工程勘察,2018,46(6):68-72.
    [16] 宗发保,邓瑞辉,任来平.一种阵列式海洋磁力测量系统[J].海洋测绘,2015,35(1):45-47.
    [17] 郝威,杨露菁.海底光缆无源探测原理及其探测线圈 [J].电子测量技术,2004(2):44-45.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石杰栋,钱长海,王嘉增,等.微分有限元海缆磁异常探测方法研究[J].数字海洋与水下攻防,2023,6(5):542-551

复制
分享
文章指标
  • 点击次数:72
  • 下载次数: 440
  • HTML阅读次数: 124
  • 引用次数: 0
历史
  • 收稿日期:2023-07-03
  • 在线发布日期: 2023-10-29
文章二维码