面向水下无线传感器网络的介电弹性体能量收集技术研究
作者:
作者简介:

樊鹏(1989-),男,博士,讲师,主要从事电活性智能材料的能量收集与驱动研究。

中图分类号:

TK79

基金项目:

国家自然科学基金项目“面向人体下肢运动的厚度梯度式介电弹性体能量收集机理及性能研究”(12202340)


Research on Dielectric Elastomer-based Energy Harvesting Technology for Underwater Wireless Sensor Networks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    水下无线传感器网络为海洋资源勘探、海洋灾害预警、海洋权益维护和海洋安全防御等提供了重要助力。然而,利用传统蓄电池对传感器进行供电的方式,需要定期充电或更换蓄电池,难以保证长时间持续可靠工作,介电弹性体能量收集技术原位供电成为解决这一难题的有效途径。目前,面向水下能量收集的介电弹性体发电机(DEG)存在能量收集性能低的问题,针对该问题,通过构建的 DEG 理论模型,研究不同参数下 DEG 的动态响应和能量收集性能,以探究提高其能量收集性能的方法。结果表明:增大负载电阻或提高 DEG 拉升阶段在其周期中所占时间比可以增强其能量密度。研究结果能够为增强介电弹性体水下能量收集性能提供新途径。

    Abstract:

    Underwater wireless sensor networks provide important support for marine resource exploration, marine disaster warning,maintenance of maritime rights and interests,and marine security defense. However,the traditional way of using batteries to power the sensors requires regular charging or replacement of the battery,which cannot ensure long-term continuous and reliable work. The dielectric elastomer-based energy harvesting technology can solve the in-situ power supply problem. Due to the problem that the dielectric elastomer generators(DEGs) output less electrical energy in underwater energy harvesting,the dynamic response and energy harvesting performance of the DEG is investigated by the developed theorical model to explore the effective method for performance improvement. Results show that increasing the load resistance or time ratio of the stretching process in a cycle period can improve the energy density of the DEG. This conclusion can prove guidance for optimizing the DEG to enhance the performance in underwater energy harvesting.

    参考文献
    [1] 苏毅珊,张贺贺,张瑞,等.水下无线传感器网络安全研究综述[J].电子与信息学报,2023,45(3):1121-1133.
    [2] 刘翔宇,王岩,王昊,等.基于柔性摩擦纳米发电机的水下能量收集技术研究[J].水下无人系统学报,2022,30(5):543-549.
    [3] 张宇,王昊,相城,等.面向观测网络供电的水下能量捕获技术研究进展[J].水下无人系统学报,2023,31(1):86-107.
    [4] HUANG Y C,LIU D X,ZHU T Y,et al.A mechanically tunable electromagnetic wave harvester and dual-modal detector based on quasi-static van der Waals heterojunction[J].Nano Energy,2022,99:107399.
    [5] ZOU D L,LIU G Y,RAO Z S,et al.Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations[J].Applied Energy,2021,302:117585.
    [6] JING T T,XU B G,YANG Y J.Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles[J].Nano Energy,2021,84:105867.
    [7] FAN P,ZHU L Q,ZHU Z C,et al.Predicting energy harvesting performance of a random nonlinear dielectric elastomer pendulum[J].Applied Energy,2021,289:116696.
    [8] PELRINE R,KORNBLUH R D,ECKERLE J,et al.Dielectric elastomers:generator mode fundamentals and applications[J].Electroactive Polymer Actuators and Devices,2001,4329:148-156.
    [9] CHIBA S,WAKI M,KORNBLUH R,et al.Current status and future prospects of power generators using dielectric elastomers[J].Smart Materials and Structures,2011,20(12):124006.
    [10] CHIBA S,WAKI M,WADA T,et al.Consistent ocean wave energy harvesting using electroactive polymer(dielectric elastomer)artificial muscle generators[J].Applied Energy,2013,104:497-502.
    [11] EAN P,WATTEZ A,ARDOISE G,et al.Standing wave tube electro active polymer wave energy converter[J].Proceedings of the SPIE,2012,8340:83400C.
    [12] MORETTI G,PAPINI G P R,RIGHI M,et al.Resonant wave energy harvester based on dielectric elastomer generator[J].Smart Materials and Structures,2018,27(3):035015.
    [13] MORETTI G,FONTANA M,VERTECHY R.Model-based design and optimization of a dielectric elastomer power take-off for oscillating wave surge energy converters[J].Meccanica,2015,50(11):2797-2813.
    [14] FOO C C,KOH S J A,KEPLINGER C,et al.Performance of dissipative dielectric elastomer generators[J].Journal of Applied Physics,2012,111(9):094107.
    [15] HONG W.Modeling viscoelastic dielectrics[J].Journal of the Mechanics and Physics of Solids,2011,59(3):637-650.
    [16] FOO C C,CAI S Q,KOH S J A,et al.Model of dissipative dielectric elastomers[J].Journal of Applied Physics,2012,111(3):034102.
    [17] GENT A N.A new constitutive relation for rubber[J].Rubber Chemistry and Technolgy,1996,69(1):59-61.
    [18] FAN P,CHEN H L.Optimizing the energy harvesting cycle of a dissipative dielectric elastomer generator for performance improvement[J].Polymers,2018,10(12):1341.
    [19] ZHOU J Y,JIANG L Y,KHAYAT R E.Methods to improve harvested energy and conversion efficiency of viscoelastic dielectric elastomer generators[J].Journal of Applied Physics,2017,121(18):184102.
    [20] HUANG J S,SHIAN S,SUO Z G,et al.Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading[J].Advanced Functional Materials,2013,23(40):5056-5061.
    [21] FAN P,CHEN H L.Performance investigation of a dissipative dielectric elastomer generator by the damping model[J].Applied Physics,2018,124(2):148.
    [22] FAN P,CHEN H L,LI B,et al.Performance investigation on dissipative dielectric elastomer generators with a triangular energy harvesting scheme[J].A Letters Journal Exploring the Frontiers of Physics,2017,120(4):47007.
    [23] FAN P,ZHU Z C,HU Q.Investigation on free relaxation process influencing energy harvesting performance of dielectric elastomer generators in intermittent motion[J].Sensors and Actuators A:Physical,2022,347:113944.
    [24] ZHOU J Y,JIANG L Y,KHAYAT R E.Investigation on the performance of a viscoelastic dielectric elastomer membrane generator[J].Soft Matter,2015,11(15):2983-2992.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

樊鹏,朱子才,胡桥.面向水下无线传感器网络的介电弹性体能量收集技术研究[J].数字海洋与水下攻防,2023,6(4):518-526

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-31
  • 在线发布日期: 2023-09-01
文章二维码