基于深度学习的声呐图像目标检测系统
作者:
作者简介:

罗逸豪(1995-),男,博士,主要从事深度学习、计算机视觉方向研究。

中图分类号:

TP391.4

基金项目:

装备预先研究项目“机载水下小目标探测技术”(3020706)


Sonar Image Object Detection System Based on Deep Learning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    声呐图像目标检测是实现水下勘探、海底救援、敌对目标侦查等任务的重要环节,深度学习相关技术的突破为该领域的发展带来了新的机遇。基于深度学习的声呐图像目标检测算法性能优于传统方法,然而相关的系统性研究与应用仍然不足。鉴于此,利用深度学习模型数据驱动的优势设计了一种声呐图像目标检测系统,以满足实际应用对系统精度、速度、可移植性、可扩展性、部署环境的需求。该系统由数据集生成、算法模型训练与测试、模型部署应用 3 个子系统组成,应用于水下可疑目标探测任务,实验结果表明:所实现的目标检测系统在测试数据上和实际应用中均具有良好的性能。

    Abstract:

    Sonar image object detection is an important part of underwater exploration,submarine rescue, hostile object reconnaissance and other tasks. The breakthrough of deep learning related technologies has brought new opportunities for the development of sonar image object detection. The performance of sonar image object detection algorithm based on deep learning is better than traditional methods,but the relevant systematic research and application are still insufficient. Therefore,a sonar image object detection system is designed to meet the requirements of accuracy,speed,portability,extensibility,and deployment environment of the system in practical applications by using the data driven advantages of the deep learning model. The system consists of three subsystems,which are data set generation,algorithm model training and testing,and model deployment. It is applied to underwater suspicious object detection task. The experimental results show that the object detection system can obtain good test data and has excellent application performance.

    参考文献
    [1] LOU G T,ZHENG R H,LIU M Q,et al.Automatic target recognition in forward-looking sonar images using transfer learning[C]//Global Oceans 2020.Bilox:IEEE,2020.
    [2] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327.
    [3] FAN Z M,XIA W J,LIU X,et al.Detection and segmentation of underwater objects from forwardlooking sonar based on a modified Mask RCNN[J].Signal,Image and Video Processing,2021,15(6):1135-1143.
    [4] WANG Y M,LIU J X,YU S Q,et al.Underwater object detection based on YOLOv3 network[C]//IEEE International Conference on Unmanned Systems.Beijing:IEEE,2021.
    [5] 李宝奇,黄海宁,刘纪元,等.基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型[J].电子与信息学报,2021,43(10):2854-2862.
    [6] 郭戈,王兴凯,徐慧朴.基于声呐图像的水下目标检测、识别与跟踪研究综述[J].控制与决策,2018,33(5):906-922.
    [7] 檀盼龙,吴小兵,张晓宇.基于声呐图像的水下目标识别研究综述[J].数字海洋与水下攻防,2022,5(4):342-353.
    [8] 周彦,陈少昌,吴可,等.SCTD1.0:声呐常见目标检测数据集[J].计算机科学,2021,48(S2):334-339.
    [9] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016.
    [10] ZHANG H C,WANG J Y.Towards adversarially robust object detection[C]//IEEE International Conference on Computer Vision.Seoul:IEEE,2019.
    [11] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2020-04-23].https://arxiv.org/pdf/20 04.10934.pdf.
    [12] WANG M,DENG W H.Deep visual domain adaptation:a survey[J].Neurocomputing,2018,312:135-153.
    [13] PASZKE A,GROSS S,MASSA F,et al.PyTorch:an imperative style,high-performance deep learning library[C]//33rd Conference on Neural Information Processing Systems.Vancouver:Curran Associates Inc,2019.
    [14] ABADI M,AGARWAL A,BARHAM P,et al.TensorFlow:large-scale machine learning on heterogeneous distributed systems[EB/OL].[2016-03-16].https://arxiv.org/abs/1603.04467.
    [15] CHEN K,WANG J Q,PANG J M,et al.MMDetection:open MMLab detection toolbox and benchmark[EB/OL].[2019-06-17].https://arxiv.org/abs/1906.07155.
    [16] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016.
    [17] XIE S N,GIRSHICK R,DOLLáR P,et al.Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017.
    [18] GAO S H,CHENG M M,ZHAO K,et al.Res2Net:a new multi-scale backbone architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(2):652-662.
    [19] LIN T Y,DOLLáR P,GIRSHICK R B,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017.
    [20] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//13th European Conference on Computer Vision.Zurich:Springer,2014.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗逸豪.基于深度学习的声呐图像目标检测系统[J].数字海洋与水下攻防,2023,6(4):423-428

复制
分享
文章指标
  • 点击次数:131
  • 下载次数: 443
  • HTML阅读次数: 166
  • 引用次数: 0
历史
  • 收稿日期:2023-02-07
  • 在线发布日期: 2023-09-01
文章二维码