基于深度学习的声呐图像目标检测系统
CSTR:
作者:
作者单位:

作者简介:

罗逸豪(1995-),男,博士,主要从事深度学习、计算机视觉方向研究。

通讯作者:

中图分类号:

TP391.4

基金项目:

装备预先研究项目“机载水下小目标探测技术”(3020706)


Sonar Image Object Detection System Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    声呐图像目标检测是实现水下勘探、海底救援、敌对目标侦查等任务的重要环节,深度学习相关技术的突破为该领域的发展带来了新的机遇。基于深度学习的声呐图像目标检测算法性能优于传统方法,然而相关的系统性研究与应用仍然不足。鉴于此,利用深度学习模型数据驱动的优势设计了一种声呐图像目标检测系统,以满足实际应用对系统精度、速度、可移植性、可扩展性、部署环境的需求。该系统由数据集生成、算法模型训练与测试、模型部署应用 3 个子系统组成,应用于水下可疑目标探测任务,实验结果表明:所实现的目标检测系统在测试数据上和实际应用中均具有良好的性能。

    Abstract:

    Sonar image object detection is an important part of underwater exploration,submarine rescue, hostile object reconnaissance and other tasks. The breakthrough of deep learning related technologies has brought new opportunities for the development of sonar image object detection. The performance of sonar image object detection algorithm based on deep learning is better than traditional methods,but the relevant systematic research and application are still insufficient. Therefore,a sonar image object detection system is designed to meet the requirements of accuracy,speed,portability,extensibility,and deployment environment of the system in practical applications by using the data driven advantages of the deep learning model. The system consists of three subsystems,which are data set generation,algorithm model training and testing,and model deployment. It is applied to underwater suspicious object detection task. The experimental results show that the object detection system can obtain good test data and has excellent application performance.

    参考文献
    相似文献
    引证文献
引用本文

罗逸豪.基于深度学习的声呐图像目标检测系统[J].数字海洋与水下攻防,2023,6(4):423-428

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-01
  • 出版日期:
文章二维码