金枪鱼体后行波壁减阻机制研究
DOI:
CSTR:
作者:
作者单位:

中国科学院力学研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

中国科学院战略性先导科技专项(A类)XDA22040203,国家自然科学基金项目(面上项目,重点项目,重大项目)


Combined effect of traveling-wave surface and undulation on the hydrodynamic performance for thunniform swimmers
Author:
Affiliation:

Institute of Mechanics, Chinese Academy of Sciences

Fund Project:

the Strategic Priority Research Program of the Chinese Academy of Sciences (class A) (Grant No. XDA22040203).,

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鱼类在游动过程中经常出现行波壁,控制圆柱体或翼型的行波壁可以抑制大规模的分离流动,以减少阻力,而行波壁对鱼类游动性能的影响机制尚不清楚。本文以金枪鱼游动为基础,耦合行波壁本文采用锐利界面浸没边界法(IBM)解决摆动过程带来的大变形运动边界问题,以了解行波壁对金枪鱼游动的影响机制。结果表明行波壁的出现改变了金枪鱼体后涡的形成和发展,进而改变了摩擦阻力和压差阻力的分布,实现了减阻。本文研究的行波壁减阻机制将来应用于仿生机器鱼的研制,并随着智能材料的发展,在实际应用过程中体现其意义。

    Abstract:

    Controlling the traveling wave wall of a cylinder or airfoil can inhibit large-scale separation flow to reduce surface frictional resistance. Aquatic animals often exhibit traveling wave walls during swimming, and recent research on their swimming principle mainly focuses on the hydrodynamic performance changes brought about by the kinematic parameters of body swing, and the mechanism of traveling wave wall influence on swimming performance is not clear. In this paper, tuna swimming is based on coupling traveling wave walls to understand a new drag reduction mechanism. In order to explore this mechanism, computational fluid dynamics methods are used and the sharp interface immersion boundary method (IBM) is used to solve the boundary problem of large deformation motion caused by the oscillation process. The results show that the appearance of the traveling wave wall changes the formation and development of the post-body vortex, which in turn changes the distribution of friction resistance and differential pressure resistance, and realizes drag reduction. We believe that with the rapid development of smart materials and artificial muscles, traveling wave wall control will be applied to the development of bionic robotic fish in the near future.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-14
  • 最后修改日期:2023-04-10
  • 录用日期:2023-04-18
  • 在线发布日期:
  • 出版日期:
文章二维码