基于生成对抗网络的声呐图像超分辨率算法
CSTR:
作者:
作者单位:

作者简介:

程文博(1995-),男,硕士,助理工程师,主要从事基于深度学习的水声通信及声呐图像处理技术研究。

通讯作者:

中图分类号:

TN929.3

基金项目:


Sonar Image Super-Resolution Algorithm Based on Generative Adversarial Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于受到复杂水声信道影响,侧扫声呐生成图像一般存在分辨率低、细节模糊等问题,这给基于侧扫声呐图像的小目标检测与识别过程带来了一定难度。常见的图像超分辨率处理算法大致可以分为插值算法、稀疏表示的重建算法等。传统插值算法存在图像边缘模糊、细节不清楚的问题,因此提出了一种改进型超分辨率生成对抗网络(SRGAN)结构。该结构可在保留图像中的小目标细节的基础上提升细节特征显示度,并且可使目标边缘更加清晰,可为后续的小目标检测和识别在一定程度上提供技术支持。

    Abstract:

    Due to the influence of complex underwater acoustic channels,the images generated by side-scan sonar have problems such as low resolution and blurred details,which brings some difficulties to the small target detection and recognition process based on side-scan sonar images. The common image super-resolution processing algorithms can be roughly divided into interpolation algorithm,sparse representation reconstruction algorithm,etc. The traditional interpolation algorithm has the problems of blurred image edges and unclear details. This paper proposes an improved Super-Resolution Generative Adversarial Network(SRGAN)structure. This structure can improve the display of detail features on the basis of retaining the details of small targets in the image,and make the target edges clearer,which can provide technical support for the subsequent small target detection and recognition to a certain extent.

    参考文献
    相似文献
    引证文献
引用本文

程文博.基于生成对抗网络的声呐图像超分辨率算法[J].数字海洋与水下攻防,2023,6(3):353-358

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码