南海上层海洋温度垂向结构的反演
作者:
作者简介:

罗灿(1999-),男,硕士生,主要从事上层海洋温度结构研究

中图分类号:

P731

基金项目:

国家自然科学基金“南海内潮对台风–海洋相互作用的调制特征与机理研究”(41876011);三亚崖州湾科技城管理局 2022 年度科技计划项目“崖州湾科技城南海海洋大数据中心”(SKJC-2022-01-001);国家重点研发计划项目课题“大剖面浮标系统的南海试验与应用(保障系统)”(2022YFC3104304);海南省科技专项资助“海南岛周边海域台风风暴潮–巨浪耦合致灾机理及预警报技术研究”(ZDYF2021SHFZ265);三亚崖州湾科技城管理局重大科技项目“南海北部海洋环境实时观测、预测与保障”(SKJC-KJ-2019KY04)


Inversion of Ocean Temperature Structure in the South China Sea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    南海上层海洋温度垂向结构对海洋气候研究及海洋防灾减灾具有重要意义,然而由于现场观测数据有限,很难获取高时空分辨率的网格化数据。基于 2007–2021 年的 Argo 剖面数据、海面高度异常数据和月平均气候态数据,评估了两层动力模型和多层回归模型在南海海区反演海洋温度结构的性能。两层动力模型反演得到的 26 ℃(D26)与 20 ℃(D20)等温线深度的均方根误差分别 13.25 m 和 21.12 m,多层回归模型的 D26、D20 均方根误差分别 11.55 m 和 14.32 m。通过对比 2 种模型的结果:多层回归模型在时间与空间上反演结果性能更佳。2 种模型反演的南海上层海洋热含量空间分布较为一致,均能应用于台风“威马逊”的强度评估;然而,在南海特殊的强内潮的背景下,2 种模型得到的 D20 性能都有所降低。

    Abstract:

    The vertical structure of ocean temperature in the South China Sea is important for climate research and marine disaster prevention and mitigation. Due to the limited in-situ observation data,it is difficult to obtain the vertical temperature structure in the South China Sea with high spatiotemporal resolution. This study evaluates the performance of the two-layer dynamic model and the multi-layer regression model in ocean temperature structure inversion based on the Argo data,the sea level anomaly(SLA)data and the World Ocean Atlas 2018(WOA18) data from 2007 to 2021. After comparing the two models,we find the Root Mean Square Error(RMSE)of D26 and D20 of the two-layer dynamic model are 13.25 m and 21.12 m,while RMSE of D26 and D20 of the multi-layer regression model are 11.55 m and 14.32 m. Overall,the multi-layer regression model has smaller error and better performance in time and space than the two-layer model. However,further analysis indicates that the spatial distribution of tropical cyclone heat potential in the South China Sea inverted by the two models is relatively consistent,and both of them can react to the intensity assessment of Typhoon Rammasun(2014). Additionally, under the influence of the special strong internal tides in the South China Sea,the performance of D20 obtained by both models is reduced.

    参考文献
    [1] LEVITUS S,ANTONOV J I,BOYER T P,et al.Worldocean heat content and thermosteric sea level change(0~2000 m),1955–2010[J].Geophysical ResearchLetters,2012,39(10):1-5.
    [2] ABRAHAM J P,BARINGER M,BINDOFF N L,et al.A review of global ocean temperature observations:Implications for ocean heat content estimates andclimate change[J].Reviews of Geophysics,2013,51(3):450-483.
    [3] QI J,LIU C,CHI J,et al.An ensemble-based machinelearning model for estimation of subsurface thermalstructure in the South China Sea[J].Remote Sensing,2022,14(13):3207.
    [4] GUAN S,ZHAO W,HUTHNANCE J,et al.Observedupper ocean response to typhoon Megi(2010)in theNorthern South China Sea[J].Journal of GeophysicalResearch:Oceans,2014,119(5):3134-3157.
    [5] PEARCE A F,FENG M.The rise and fall of the“marine heat wave” off Western Australia during thesummer of 2010/2011[J].Journal of Marine Systems,2013,111:139-156.
    [6] Du Y,Zhang Y,Zhang L Y,et al.Thermoclinewarming induced extreme Indian Ocean dipole in2019[J].Geophysical Research Letters,2020,47(18):1-10.
    [7] SHAY L K,GONI G J,BLACK P G.Effects of a warmoceanic feature on Hurricane Opal[J].Monthly WeatherReview,2000,128(5):1366-1383.
    [8] PUN I F,LIN I I,WU C R,et al.Validation andapplication of altimetry-derived upper ocean thermalstructure in the western North Pacific Ocean fortyphoon-intensity forecast[J].IEEE Transactions onGeoscience and Remote Sensing,2007,45(6):1616-1630.
    [9] CHELTON D B,SCHLAX M G,SAMELSON R M..Global observations of nonlinear mesoscale eddies[J].Progress in Oceanography,2011,91(2):167-216.
    [10] PUN I F,LIN I I,KO D S.New generation ofsatellite-derived ocean thermal structure for theWestern North Pacific typhoon intensity forecasting[J].Progress in Oceanography,2014,121:109-124.
    [11] NARDELLI B.A deep learning network to retrieve ocean hydrographic profiles from combined satelliteand in situ measurements[J].Remote Sensing,2020,12(19):1-14.
    [12] CHEN C,YANG K,MA Y,et al.Reconstructing thesubsurface temperature field by using sea surface datathrough self-organizing map method[J].IEEEGeoscience and Remote Sensing Letters,2018,15(12):1812-1816.
    [13] SU H,WU X,YAN X H,et al.Estimation of subsurfacetemperature anomaly in the Indian Ocean during recentglobal surface warming hiatus from satellitemeasurements:A support vector machine approach[J].Remote Sensing of Environment,2015,160:63-71.
    [14] 杜文波,蔡观强,黄文凯,等.西沙海区新近纪碳酸盐岩台地地震响应特征和控制因素[J].海洋地质前沿,2021,37(1):20-30.
    [15] LI H,XU F,ZHOU W,et al.Development of a globalgridded Argo data set with Barnes successivecorrections[J].Journal of Geophysical Research:Oceans,2017,122(2):866-889.
    [16] ZHANG Y,LIU Y,GUAN S,et al.Sudden trackturning of Typhoon Prapiroon(2012)enhanced theupper ocean response[J].Remote Sensing,2023,15(2):302.
    [17] Copernicus Programme.Global ocean gridded L4 seasurface heights and derived variables reprocessed 1993ongoing[R/OL].(2019-01-21)[2022-05-30].https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047.
    [18] 张淼,王素娟,覃丹宇,等.FY-3C 微波成像仪海面温度产品算法及精度检验[J].遥感学报,2018,22(5):713-722.
    [19] GENTEMANN C L,MEISSNER T,WENTZ F J.Accuracy of satellite sea surface temperatures at 7 and11 GHz[J].IEEE Transactions on Geoscience andRemote Sensing,2009,48(3):1009-1018.
    [20] 王婷.国外海洋潜标系统的发展[C]//中国声学学会水声学分会2011年全国水声学学术会议论文集.北京:中国声学学会,2011:327-329.
    [21] GILL A E,NILLER P P.The theory of the seasonalvariability in the ocean[J].Deep Sea Research andOceanographic Abstracts,1973,20(2):141-177.
    [22] WILLIS J K,ROEMMICH D,CORNUELLE B.Combining altimetric height with broadscale profiledata to estimate steric height,heat storage,subsurfacetemperature,and sea-surface temperature variability[J].Journal of Geophysical Research:Oceans,2003,108(C9):1-12.
    [23] QU T.Role of ocean dynamics in determining the meanseasonal cycle of the South China Sea surfacetemperature[J].Journal of Geophysical Research:Oceans,2001,106(C4):6943-6955.
    [24] GUAN S,LI S,HOU Y,et al.Increasing threat oflandfalling typhoons in the western North Pacificbetween 1974 and 2013[J].International Journal ofApplied Earth Observation and Geoinformation,2018,68:279-286.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗灿,刘宇皓,王一帆,等.南海上层海洋温度垂向结构的反演[J].数字海洋与水下攻防,2023,6(2):186-197

复制
分享
文章指标
  • 点击次数:70
  • 下载次数: 636
  • HTML阅读次数: 246
  • 引用次数: 0
历史
  • 在线发布日期: 2023-04-24
文章二维码