Artificial Intelligence-assisted Marine Three-dimensional Observation and Detection
Author:
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
|
文章评论
摘要:
海洋立体观测与探测是获取海洋信息的重要手段,是海洋科学研究、环境保护、经济发展的基础。近年来海洋立体观测网络的快速发展带来了观测数据质量与数量的显著提升,进一步推动了海洋信息处理技术从“模型为主”逐步迈向“数据与模型双驱动”的新范式。在这一过程中,人工智能(AI)与海洋信息的交叉融通发挥了重要作用。从海洋立体观测和探测 2 个方面,讨论经典方法的局限性,回顾 AI 辅助下海洋物理场重建、水下目标检测与水下目标定位的研究新进展,重点阐述 AI 辅助的海洋立体观测与探测研究中亟需解决的关键科学问题及潜在的解决思路,并展望了该领域未来的发展方向。
Abstract:
Marine three-dimensional observation and detection is an important means to obtain marine information,and is the basis of marine scientific research,environmental protection and economic development. The rapid development of marine three-dimensional observation network in recent years has brought significant improvement in the quality and quantity of observation data,and also promoted the paradigm shift of marine information processing technology from "model-oriented" to "data and model-driven". In this process,the crossintegration of artificial intelligence(AI)and marine information has played an important role. In this paper,we discuss the limitations of classical methods,review new advances in AI-aided marine physical field reconstruction,underwater target detection and localization,highlight the key scientific problems and potential solutions in AI-aided marine three-dimensional observation and detection,and look forward to the future development direction of this field.