基于改进生成式对抗网络的水下图像增强
CSTR:
作者:
作者单位:

作者简介:

王明哲(1998-),男,硕士生,主要从事图像处理研究

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金“水下图像盲复原非局部变分方法及质量评价”(61901240)


Underwater Image Enhancement Based on Improved Generative Adversarial Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于水介质的吸收和散射特性会导致雾化、低对比度、颜色退化等各种水下成像失真,严重影响了水下图像的后续利用。为了恢复清晰的水下图像,提出一种基于改进生成对抗网络的深度学习模型。借助图像质量评价技术,将生成的过程样本与高质量样本进行拟合,并将拟合得到的差值信息用于优化网络中的生成器。改进的生成式对抗网络有效改善了由真假训练逻辑带来的图像质量提升限制的问题。实验结果显示:该方法有效的恢复了水下图像的色彩,并改善了图像的清晰度和对比度;相比其他方法,提出的方法在 SSIM、UCIQE 和 UIQM 指标上分别提升了 2.9%、6.2%和 14.3%。

    Abstract:

    Due to the absorption and scattering properties of water media,underwater images often suffer from imaging distortions,such as fogging,low contrast and color degradation,which seriously affect the subsequent utilization. To restore clear underwater images,an improved GAN-based deep learning model is proposed for underwater image enhancement. By employing the image quality assessment technique,the generated intermediate samples are fitted to the high quality samples,and the difference information obtained from the fit is used to optimize the generators in the network. The improved generative adversarial network effectively ameliorates the problem of image quality improvement limitations brought by the true-false training logic. The experimental results show that the proposed method can effectively restore the color of the underwater images,and improve the clarity and contrast. In addition,comparing with several state-of-the-art methods,our proposed method achieves increases of 2.9%,6.2% and 14.3% in terms of SSIM,UCIQE and UIQM indexes,respectively.

    参考文献
    相似文献
    引证文献
引用本文

王明哲,侯国家,马佳琦,等.基于改进生成式对抗网络的水下图像增强[J].数字海洋与水下攻防,2023,6(1):56-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-01
  • 出版日期:
文章二维码