基于深度学习的水下光学图像超分辨率重建综述
作者:
作者简介:

罗逸豪(1995-),男,博士,主要从事深度学习、计算机视觉方向研究

中图分类号:

TP391.4

基金项目:

装备预先研究项目“机载水下小目标探测技术”(3020706)


A Review of Underwater Optical Image Super-resolution Reconstruction Based on Deep Learning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [132]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    图像超分辨率重建旨在从低分辨率图像中生成包含高频细节的高分辨率图像。随着近年来人工智能的快速发展,基于深度学习的超分辨率重建算法取得了突破性进展。然而,水下光学图像通常会产生严重的颜色失真、细节缺失、对比度下降与模糊等多种退化问题,重建难度远高于常规的自然光学图像。目前尚未有文献对基于深度学习的水下光学图像超分辨率重建进行系统性综述。首先,对自然图像退化方式和数据集进行分类总结,结合国内外最新研究现状将基于深度学习的单幅图像超分辨率重建算法分为针对一般退化、已知(非盲)多种退化、未知(盲)多种退化 3 个方面进行详细总结,为水下应用场景提供参考。然后, 介绍了水下光学图像退化方式,归纳了常见的公开数据集,总结并分析了水下光学图像超分辨率重建的最新进展。最后,对该领域未来可能的发展趋势进行了展望。

    Abstract:

    Image super-resolution reconstruction aims to generate high resolution images containing high-frequency details from low resolution images. With the rapid development of artificial intelligence in recent years,the super-resolution reconstruction algorithm based on deep learning has made a breakthrough. However, underwater optical images usually have many degradation problems,such as serious color distortion,missing details, contrast reduction and blurring,which makes their reconstruction much more difficult than that of conventional natural optical images. At present,there is no systematic review of underwater optical image super-resolution reconstruction based on deep learning. First of all,the natural image degradation methods and data sets are classified and summarized. Combining with the latest research at home and overseas,the single image super-resolution reconstruction algorithm based on deep learning is summarized from 3 aspects:general degradation method, non-blind multiple degradation method,and blind multiple degradation method,which provides reference for underwater application scenarios. Then,the degradation mode of underwater optical image is introduced,the common open data sets are summarized,and the latest progress of underwater optical image super-resolution reconstruction is summarized and analyzed. Finally,the possible future development trend of this field is prospected.

    参考文献
    [1] 林森,赵颍.水下光学图像中目标探测关键技术研究综述[J].激光与光电子学进展,2020,57(6):26-37.
    [2] 潘金山.基于深度学习的图像去模糊方法研究进展[J].计算机科学,2021,48(3):9-13.
    [3] 刘佩,贾建,陈莉,等.基于快速自适应的二维经验模态分解的图像去噪算法[J].计算机科学,2019,46(11):260-266.
    [4] WU H Y,QU Y Y,LIN S H,et al.Contrastive learningfor compact single image dehazing[C]//2021IEEE/CVF Conference on Computer Vision and PatternRecognition.Online:IEEE,2021.
    [5] 张凯.基于卷积神经网络的图像去噪与超分辨率方法研究[D].哈尔滨:哈尔滨工业大学,2019.
    [6] 吴靖,叶晓晶,黄峰,等.基于深度学习的单帧图像超分辨率重建综述[J].电子学报,2022,50(9):2265-2294.
    [7] 张颢,范新南,李敏,等.基于光学成像模型的水下图像超分辨率重构[J].计算机与现代化,2017(4):7-13.
    [8] ISLAM M J,LUO P,SATTAR J.Simultaneousenhancement and super-resolution of underwaterimagery for improved visual perception[C]//Robotics:Science and Systems XVI.Corvalis:MIT Press,2020.
    [9] ANWAR S,KHAN S H,BARNES NICK.A deepjourney into super-resolution:a survey[J].ACMComputing Surveys,2020,53(3):1-34.
    [10] WANG Z H,CHEN J,HOI S C H.Deep learning forimage super-resolution:a survey[J].IEEE Transactionson Pattern Analysis and Machine Intelligence,2021,43(10):3365-3387.
    [11] BASHIR S M A,WANG Y,KHAN M,et al.Acomprehensive review of deep learning-based singleimage super-resolution[J].PeerJ Computer Science,2021,7:e621.
    [12] 杨才东,李承阳,李忠博,等.深度学习的图像超分辨率重建技术综述[J].计算机科学与探索,2022,16(9):1990-2010.
    [13] WANG X T,XIE L B,DONG C,et al.Real-ESRGAN:training real-world blind super-resolution with puresynthetic data[C]//2021 IEEE/CVF InternationalConference on Computer Vision Workshops.Montreal:IEEE,2021.
    [14] ANWAR S,BARNES N.Densely residual Laplaciansuper-resolution[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2022,44(3):1192-1204.
    [15] CHEN H T,WANG Y H,GUO T Y,et al.Pre-trainedimage processing transformer[C]//2021 IEEE/CVFConference on Computer Vision and PatternRecognition.Nashville:IEEE,2021.
    [16] BEVILACQUA M,ROUMY A,GUILLEMOT C,etal.Low-complexity single-image super-resolutionbased on nonnegative neighbor embedding[C]//BritishMachine Vision Conference 2012.Guildford:BMVAPress,2012.
    [17] ZEYDE R,ELAD M,PROTTER M.On single imagescale-up using sparse-representations[C]//7th InternationalConference on Curves and Surfaces.Avignon:Springer,2012.
    [18] YANG J C,WRIGHT J,HUANG T S,et al.Imagesuper-resolution via sparse representation[J].IEEETransactions on Image Processing,2010,19(11):2861-2873.
    [19] MARTIN D R,FOWLKES C C,TAL D,et al.Adatabase of human segmented natural images and itsapplication to evaluating segmentation algorithms andmeasuring ecological statistics[C]//2001 IEEEInternational Conference on Computer Vision.Vancouver:IEEE,2001.
    [20] HUANG J B,SINGH A,AHUJA N.Single imagesuper-resolution from transformed self-exemplars[C]//2015 IEEE Conference on Computer Vision and PatternRecognition.Boston:IEEE,2015.
    [21] FUJIMOTO A,OGAWA T,YAMAMOTO K,et al.Manga109 dataset and creation of metadata[C]//1stInternational Workshop on Comics Analysis,Processing and Understanding.Cancun:ACM,2016.
    [22] AGUSTSSON E,TIMOFTE R.NTIRE 2017 challengeon single image super-resolution:dataset and study[C]//2017 IEEE Conference on Computer Vision and PatternRecognition Workshops.Honolulu:IEEE,2017.
    [23] TIMOFTE R,AGUSTSSON E,VAN GOOL L,et al.NTIRE 2017 challenge on single imagesuper-resolution:methods and results[C]//2017 IEEEConference on Computer Vision and PatternRecognition Workshops.Honolulu:IEEE,2017.
    [24] CAI J R,ZENG H,YONG H W,et al.Towardreal-world single image super-resolution:a newbenchmark and a new model[C]//2019 IEEE/CVFInternational Conference on Computer Vision.Seoul:IEEE,2019.
    [25] WEI P X,XIE Z W,LU H N,et al.Componentdivide-and-conquer for real-world imagesuper-resolution[C]//16th European Conference onComputer Vision.Glasgow:Springer,2020.
    [26] SONG X B,DAI Y C,QIN X Y.Deeply superviseddepth map super-resolution as novel view synthesis[J].IEEE Transactions on Circuits and Systems for VideoTechnology,2019,29(8):2323-2336.
    [27] SHIM G,PARK J,KWEON I S.Robustreference-based super-resolution with similarity-awaredeformable convolution[C]//2020 IEEE/CVFConference on Computer Vision and PatternRecognition.Online:IEEE,2020.
    [28] DONG C,LOY C C,HE K M,et al.Imagesuper-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2016,38(2):295-307.
    [29] KIM J,LEE J K,LEE K M.Accurate imagesuper-resolution using very deep convolutionalnetworks[C]//2016 IEEE Conference on ComputerVision and Pattern Recognition.Las Vegas:IEEE,2016.
    [30] ZHANG K,ZUO W M,CHEN Y J,et al.Beyond aGaussian denoiser:residual learning of deep CNN forimage denoising[J].IEEE Transactions on ImageProcessing,2017,26(7):3142-3155.
    [31] ZHANG K,ZUO W M,GU S H,et al.Learning deepCNN denoiser prior for image restoration[C]//2017IEEE Conference on Computer Vision and PatternRecognition Workshops.Honolulu:IEEE,2017.
    [32] MAO X J,SHEN C H,YANG Y B.Image restorationusing very deep convolutional encoder-decodernetworks with symmetric skip connections[C]//Advances in Neural Information Processing Systems.Barcelona:Curran Associates Inc,2016.
    [33] KIM J,LEE J K,LEE K M.Deeply-recursiveconvolutional network for image super-resolution[C]//2016 IEEE Conference on Computer Vision and PatternRecognition.Las Vegas:IEEE,2016.
    [34] TAI Y,YANG J,LIU X M.Image super-resolution viadeep recursive residual network[C]//2017 IEEEConference on Computer Vision and PatternRecognition Workshops.Honolulu:IEEE,2017.
    [35] TAI Y,YANG J,LIU X M,et al.MemNet:a persistentmemory network for image restoration[C]//2017 IEEE International Conference on Computer Vision.Venice:IEEE,2017.
    [36] DONG C,LOY C C,TANG X O.Accelerating thesuper-resolution convolutional neural network[C]//14thEuropean Conference on Computer Vision.Amsterdam:Springer,2016.
    [37] SHI W Z,CABALLERO J,HUSZáR F,et al.Real-time single image and video super-resolutionusing an efficient sub-pixel convolutional neuralnetwork[C]//2016 IEEE Conference on ComputerVision and Pattern Recognition.Las Vegas:IEEE,2016.
    [38] LIM B,SON S,KIM H,et al.Enhanced deep residualnetworks for single image super-resolution[C]//2017IEEE Conference on Computer Vision and PatternRecognition Workshops.Honolulu:IEEE,2017.
    [39] AHN N,KANG B,SOHN K.Fast,accurate,andlightweight super-resolution with cascading residualnetwork[C]//15th European Conference on ComputerVision.Munich:Springer,2018.
    [40] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//2017IEEE Conference on Computer Vision and PatternRecognition Workshops.Honolulu:IEEE,2017.
    [41] TONG T,LI G,LIU X J,et al.Image super-resolutionusing dense skip connections[C]//2017 IEEEInternational Conference on Computer Vision.Venice:IEEE,2017.
    [42] ZHANG Y L,TIAN Y P,KONG Y,et al.Residualdense network for image super-resolution[C]//2018IEEE/CVF Conference on Computer Vision and PatternRecognition.Salt Lake City:IEEE,2018.
    [43] ZHANG Y,LI K,LI K,et al.Image super-resolutionusing very deep residual channel attention networks[C]//15th European Conference on Computer Vision.Munich:Springer,2018.
    [44] NIU B,WEN W L,REN W Q,et al.Single imagesuper-resolution via a holistic attention network[C]//16th European Conference on Computer Vision.Glasgow:Springer,2020.
    [45] LIU J,ZHANG W J,TANG Y T,et al.Residual featureaggregation network for image super-resolution[C]//2020 IEEE/CVF Conference on Computer Vision andPattern Recognition.Online:IEEE,2020.
    [46] MEI Y Q,FAN Y C,ZHOU Y Q,et al.Imagesuper-resolution with cross-scale non-local attentionand exhaustive self-exemplars mining[C]//2020IEEE/CVF Conference on Computer Vision and PatternRecognition.Online:IEEE,2020.
    [47] MEI Y Q,FAN Y C,ZHOU Y Q.Imagesuper-resolution with non-local sparse attention[C]//2021 IEEE/CVF Conference on Computer Vision andPattern Recognition.Online:IEEE,2021.
    [48] MAGID S A,ZHANG Y L,WEI D L,et al.Dynamichigh-pass filtering and multi-spectral attention forimage super-resolution[C]//2021 IEEE/CVFInternational Conference on Computer Vision.Online:IEEE,2021.
    [49] WANG Z W,LIU D,YANG J C,et al.Deep networksfor image super-resolution with sparse prior[C]//2015IEEE International Conference on Computer Vision.Santiago:IEEE,2015.
    [50] LAI W S,HUANG J B,AHUJA N,et al.DeepLaplacian pyramid networks for fast and accuratesuper-resolution[C]//2017 IEEE Conference onComputer Vision and Pattern Recognition Workshops.Honolulu:IEEE,2017.
    [51] LAI W S,HUANG J B,AHUJA N,et al.Fast andaccurate image super-resolution with deep Laplacianpyramid networks[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2019,41(11):2599-2613.
    [52] CHUDASAMA V M,UPLA K P.E-ProSRNet:anenhanced progressive single image super-resolutionapproach[J].Computer Vision and ImageUnderstanding,2020,200:103038.
    [53] HARIS M,SHAKHNAROVICH G,UKITA N.Deepback-projection networks for super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision andPattern Recognition.Salt Lake City:IEEE,2018.
    [54] LI Z,YANG J L,LIU Z,et al.Feedback network forimage super-resolution[C]//2019 IEEE/CVFConference on Computer Vision and PatternRecognition.Long Beach:IEEE,2019.
    [55] JOHNSON J,ALAHI A,LI F F.Perceptual losses forreal-time style transfer and super-resolution[C]//14thEuropean Conference on Computer Vision.Amsterdam:Springer,2016.
    [56] LEDIG C,THEIS L,HUSZáR F,et al.Photo-realisticsingle image super-resolution using a generative adversarial network[C]//2017 IEEE Conference onComputer Vision and Pattern Recognition Workshops.Honolulu:IEEE,2017.
    [57] WANG X,YU K,WU S,et al.ESRGAN:enhancedsuper-resolution generative adversarial networks[C]//15th European Conference on Computer VisionWorkshops.Munich:Springer,2018.
    [58] SAJJADI M S M,SCH?LKOPF B,HIRSCH M.EnhanceNet:single image super-resolution throughautomated texture synthesis[C]//2017 IEEEInternational Conference on Computer Vision.Venice:IEEE,2017.
    [59] PARK S,SON H,CHO S,et al.SRFeat:single imagesuper-resolution with feature discrimination[C]//15thEuropean Conference on Computer Vision.Munich:Springer,2018.
    [60] MA C,RAO Y M,CHENG Y,et al.Structure-preserving super resolution with gradientguidance[C]//2020 IEEE/CVF Conference onComputer Vision and Pattern Recognition.Online:IEEE,2020.
    [61] ZHANG K,ZUO W M,ZHANG L.Learning a singleconvolutional super-resolution network for multipledegradations[C]//2018 IEEE/CVF Conference onComputer Vision and Pattern Recognition.Salt LakeCity:IEEE,2018.
    [62] ZHANG K,ZUO W M,ZHANG L.Deepplug-and-play super-resolution for arbitrary blurkernels[C]//2019 IEEE/CVF Conference on ComputerVision and Pattern Recognition.Long Beach:IEEE,2019.
    [63] ZHANG K,GOOL L V,TIMOFTE R.Deep unfoldingnetwork for image super-resolution[C]//2020IEEE/CVF Conference on Computer Vision and PatternRecognition.Online:IEEE,2020.
    [64] XU Y S,TSENG S R,TSENG Y,et al.Unifieddynamic convolutional network for super-resolutionwith variational degradations[C]//2020 IEEE/CVFConference on Computer Vision and PatternRecognition.Online:IEEE,2020.
    [65] SHOCHER A,COHEN N,IRANI M.Zero-shotsuper-resolution using deep internal learning[C]//2018IEEE/CVF Conference on Computer Vision and PatternRecognition.Salt Lake City:IEEE,2018.
    [66] SOH J W,CHO S,CHO N I.Meta-transfer learning forzero-shot super-resolution[C]//2020 IEEE/CVFConference on Computer Vision and PatternRecognition.Online:IEEE,2020.
    [67] BELL-KLIGLER S,SHOCHER A,IRANI M.Blindsuper-resolution kernel estimation using anInternal-GAN[C]//Advances in Neural InformationProcessing Systems.Vancouver:Curran AssociatesInc,2019.
    [68] HUSSEIN S A,TIRER T,GIRYES R.Correction filterfor single image super-resolution:robustifying offthe-shelf deep super-resolvers[C]//2020 IEEE/CVFConference on Computer Vision and PatternRecognition.Online:IEEE,2020.
    [69] ULYANOV D,VEDALDI A,LEMPITSKY V S.Deepimage prior[C]//2018 IEEE/CVF Conference onComputer Vision and Pattern Recognition.Salt LakeCity:IEEE,2018.
    [70] GANDELSMAN T,SHOCHER A,IRANI M.Double-DIP:unsupervised image decomposition viacoupled Deep-Image-Priors[C]//2019 IEEE/CVFConference on Computer Vision and PatternRecognition.Long Beach:IEEE,2019.
    [71] LIANG J Y,ZHANG K,GU S H,et al.Flow-basedkernel prior with application to blindsuper-resolution[C]//2021 IEEE/CVF Conference onComputer Vision and Pattern Recognition.Online:IEEE,2021.
    [72] LIANG J Y,SUN G L,ZHANG K,et al.Mutual affinenetwork for spatially variant kernel estimation in blindimage super-resolution[C]//2021 IEEE/CVFInternational Conference on Computer Vision.Online:IEEE,2021.
    [73] TAO G P,JI X Z,WANG W Z,et al.Spectrum-to-kernel translation for accurate blind imagesuper-resolution[C]//Advances in Neural InformationProcessing Systems.Online:Curran Associates Inc,2021.
    [74] GU J J,LU H N,ZUO W M,et al.Blindsuper-resolution with iterative kernel correction[C]//2019 IEEE/CVF Conference on Computer Vision andPattern Recognition.Long Beach:IEEE,2019.
    [75] LUO Z X,HUANG Y,LI S,et al.Unfolding thealternating optimization for blind super resolution[C]//Advances in Neural Information Processing Systems.Online:Curran Associates Inc,2020.
    [76] ZHOU R F,SüSSTRUNK S.Kernel modelingsuper-resolution on real low-resolution images[C]//2019 IEEE/CVF International Conference on ComputerVision.Seoul:IEEE,2019.
    [77] CORNILLèRE V,DJELOUAH A,WANG Y F,et al.Blind image super-resolution with spatially variantdegradations[J].ACM Transactions on Graphics,2019,38(6):166:1–13.
    [78] WANG L G,WANG Y Q,DONG X Y,et al.Unsupervised degradation representation learning forblind super-resolution[C]//2021 IEEE/CVF Conferenceon Computer Vision and Pattern Recognition.Online:IEEE,2021.
    [79] KIM S Y,SIM H,KIM M.KOALAnet:blindsuper-resolution using kernel-oriented adaptive localadjustment[C]//2021 IEEE/CVF Conference onComputer Vision and Pattern Recognition.Online:IEEE,2021.
    [80] HUI Z,LI J,WANG X M,et al.Learning thenon-differentiable optimization for blindsuper-resolution[C]//2021 IEEE/CVF Conference onComputer Vision and Pattern Recognition.Online:IEEE,2021.
    [81] XIE L B,WANG X T,DONG C,et al.Findingdiscriminative filters for specific degradations in blindsuper-resolution[C]//Advances in Neural InformationProcessing Systems.Online:Curran Associates Inc,2021.
    [82] SCHETTINI R,CORCHS S.Underwater imageprocessing:state of the art of restoration and imageenhancement methods[J].EURASIP Journal onAdvances in Signal Processing,2010,2010:1-14.
    [83] ISLAM M J,ENAN S S,LUO P.Underwater imagesuper-resolution using deep residual multipliers[C]//2020 IEEE International Conference on Robotics andAutomation.Paris:IEEE,2020.
    [84] WANG H,WU H,HU Q,et al.Underwater imagesuper-resolution using multi-stage informationdistillation networks[J].Journal of VisualCommunication and Image Representation,2021,77:103136.
    [85] DUARTE A,CODEVILLA F,GAYA J D O,et al.Adataset to evaluate underwater image restorationmethods[C]//OCEANS 2016.Shanghai:IEEE,2016.
    [86] LI J,SKINNER K A,EUSTICE R M,et al.WaterGAN:unsupervised generative network to enablereal-time color correction of monocular underwaterimages[J].IEEE Robotics and Automation Letters,2018,3(1):387-394.
    [87] MARQUES T P,ALBU A B,HOEBERECHTS M.Acontrast-guided approach for the enhancement oflow-lighting underwater images[J].Journal ofImaging,2019,5(10):79.
    [88] LI H Y,LI J J,WANG W.A fusion adversarialunderwater image enhancement network with a publictest dataset[EB/OL].[2019-06-30].https://arxiv.org/abs/1906.06819.
    [89] LI C Y,GUO C L,REN W Q,et al.An underwaterimage enhancement benchmark dataset andbeyond[J].IEEE Transactions on Image Processing,2020,29:4376-4389.
    [90] LIU R S,FAN X,ZHU M,et al.Real-world underwaterenhancement:challenges,benchmarks,and solutionsunder natural light[J].IEEE Transactions on Circuitsand Systems for Video Technology,2020,30(12):4861-4875.
    [91] HOU G J,ZHAO X,PAN Z K,et al.Benchmarkingunderwater image enhancement and restoration,andbeyond[J].IEEE Access,2020,8:122078-122091.
    [92] ISLAM M J,XIA Y Y,SATTAR J.Fast underwaterimage enhancement for improved visual perception[J].IEEE Robotics and Automation Letters,2020,5(2):3227-3234.
    [93] BERMAN D,LEVY D,AVIDAN S,et al.Underwatersingle image color restoration using haze-lines and anew quantitative dataset[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2021,43(8):2822-2837.
    [94] ZHU J Y,PARK T,ISOLA P,et al.Unpairedimage-to-image translation using cycle-consistentadversarial networks[C]//2017 IEEE InternationalConference on Computer Vision.Venice:IEEE,2017.
    [95] QUEVEDO E,DELORY E,CALLICO G,et al.Underwater video enhancement using multi-camerasuper-resolution[J].Optics Communications,2017,404:94-102.
    [96] LU H M,LI Y J,UEMURA T,et al.FDCNet:filteringdeep convolutional network for marine organismclassification[J].Multimedia Tools and Applications,2018,77(17):21847-21860.
    [97] LIU C W,LI H J,WANG S C,et al.A dataset andbenchmark of underwater object detection for robotpicking[C]//2021 IEEE International Conference onMultimedia & Expo Workshops.Shenzhen:IEEE,2021.
    [98] ISLAM M J,EDGE C,XIAO Y Y.Semanticsegmentation of underwater imagery:dataset andbenchmark[C]//2020 IEEE/RSJ InternationalConference on Intelligent Robots and Systems.LasVegas:IEEE,2020.
    [99] CHEN Y,YANG B,XIA M,et al.Model-basedsuper-resolution reconstruction techniques forunderwater imaging[C]//Photonics and OptoelectronicsMeetings:Optoelectronic Sensing and Imaging.Beijing:International Society for Optics andPhotonics,2012.
    [100] 陈龙彪,谌雨章,王晓晨,等.基于深度学习的水下图像超分辨率重建方法[J].计算机应用,2019,39(9):2738-2743.
    [101] 王海.基于深度学习的珊瑚礁鱼类图像超分辨率重建及检测[D].北京:北京交通大学,2020.
    [102] 程娜.基于超分辨率的水下图像增强方法的研究[D].大连:大连海事大学,2019.
    [103] 徐永兵,袁东,余大兵,等.多注意力机制引导的双目图像超分辨率重建算法[J].电子测量技术,2021,44(15):103-108.
    [104] ZHANG Y,YANG S X,SUN Y M,et al.Attention-guided multi-path cross-CNN for underwaterimage super-resolution[J].Signal Image VideoProcess,2022,16(1):155-163.
    [105] CHEN X L,WEI S Q,YI C,et al.Progressiveattentional learning for underwater image superresolution[C]//13th International Conference onIntelligent Robotics and Applications.Kuala:Springer,2020.
    [106] ISOLA P,ZHU J Y,ZHOU T H,et al.Image-to-imagetranslation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and PatternRecognition.Honolulu:IEEE,2017.
    [107] CHERIAN A K,POOVAMMAL E.A novel Alphasrganfor underwater image super resolution[J].Computers,Materials and Continuum,2021,69(2):1537-1552.
    [108] 袁红春,孔令栋,张闪闪,等.基于信息蒸馏机制的水下图像超分辨率重建算法[J/OL].激光与光电子学进展.[2022-11-15].http://kns.cnki.net/kcms/detail/31.1690.TN.20220709.1728.006.html.
    [109] DING X Y,WANG Y F,LIANG Z,et al.Towardsunderwater image enhancement using super-resolutionconvolutional neural networks[C]//9th InternationalConference on Internet Multimedia Computing andService.Qingdao:ACM Press,2017.
    [110] MOGHIMI M K,MOHANNA F.Real-time underwaterimage resolution enhancement using super-resolutionwith deep convolutional neural networks[J].Journal ofReal-time Image Processing,2021,18(5):1653-1667.
    [111] CHENG N,ZHAO T T,CHEN Z Y,et al.Enhancement of underwater images by super-resolutiongenerative adversarial networks[C]//10th InternationalConference on Internet Multimedia Computing andService.Nanjing:ACM Press,2018.
    [112] CHEN Y,SUN J X,JIAO W C,et al.Recoveringsuper-resolution generative adversarial network forunderwater images[C]//26th International Conferenceon Neural Information Processing.Sydney:Springer,2019.
    [113] 陈浩.水下图像增强与超分辨率算法研究[D].绵阳:西南科技大学,2021.
    [114] CHEN Y Z,NIU K L,ZENG Z F,et al.A waveletbased deep learning method for underwater image superresolution reconstruction[J].IEEE Access,2020,8:117759-117769.
    [115] WANG L,XU L Z,TIAN W,et al.Underwater imagesuper-resolution and enhancement via progressivefrequency-interleaved network[J].Journal of VisualCommunication and Image Representation,2022,86:103545.
    [116] REN T D,XU H Y,JIANG G Y,et al.ReinforcedSwin-Convs transformer for simultaneous underwatersensing scene image enhancement andsuper-resolution[J].IEEE Transactions on Geoscienceand Remote Sensing,2022,60:1-16.
    [117] LIU Z,LIN Y T,CAO Y,et al.Swin transformer:hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on ComputerVision.Montreal:IEEE,2021.
    [118] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical imagesegmentation[C]//Medical Image Computing andComputer-Assisted Intervention.Munich:Springer,2015.
    [119] AGHELAN A.Underwater images super-resolutionusing generative adversarial network-based model[EB/OL].[2022-11-07].https://arxiv.org/abs/2211.03550.
    [120] 马文齐.基于深度学习的浮游生物图像超分辨率重建研究[D].济南:山东师范大学,2022.
    [121] WANG L G,DONG X Y,WANG Y Q,et al.Exploringsparsity in image super-resolution for efficientinference[C]//2021 IEEE/CVF Conference onComputer Vision and Pattern Recognition.Nashville:IEEE,2021.
    [122] LI J N,LIANG X D,WEI Y C,et al.Perceptualgenerative adversarial networks for small objectdetection[C]//2017 IEEE Conference on ComputerVision and Pattern Recognition Workshops.Honolulu:IEEE,2017.
    [123] NOH J,BAE W,LEE W,et al.Better to follow,followto be better:towards precise supervision of featuresuper-resolution for small object detection[C]//2019IEEE/CVF International Conference on ComputerVision.Seoul:IEEE,2019.
    [124] BAI Y C,ZHANG Y Q,DING M L,et al.SOD-MTGAN:small object detection via multi-taskgenerative adversarial network[C]//15th EuropeanConference on Computer Vision.Munich:Springer,2018.
    [125] SAYED M,BROSTOW G J.Improved handling ofmotion blur in online object detection[C]//2021IEEE/CVF Conference on Computer Vision and PatternRecognition.Nashville:IEEE,2021.
    [126] 檀盼龙,吴小兵,张晓宇.基于声呐图像的水下目标识别研究综述[J].数字海洋与水下攻防,2022,(5 4):342-353.
    [127] SUNG M N,KIM J,YU S.Image-based superresolution of underwater sonar images using generativeadversarial network[C]//2018 IEEE Region 10Conference.Jeju:IEEE,2018.
    [128] 梁雪灿.基于生成对抗网络的声学图像超分辨率研究[D].哈尔滨:哈尔滨工程大学,2019.
    [129] HUA J,LIU M Z,WANG S J.A super-resolutionreconstruction method of underwater target detectionimage by side scan sonar[C]//2nd InternationalConference on Control,Robotics and IntelligentSystem.Qingdao:ACM Press,2021.
    [130] FELDENS P.Super resolution by deep learningimproves boulder detection in side scan sonarbackscatter mosaics[J].Remote Sensing,2020,12(14):2284.
    [131] FAN Y W,ZHU C M.Super-resolution reconstructionof underwater sonar image based on multi-scale featurefusion[C]//2nd International Conference on Controland Intelligent Robotics.Nanjing:ACM Press,2022.
    [132] OUYANG D H,LI Y Z,WANG Z Z.Channel estimationfor underwater acoustic OFDM communications:an imagesuper-resolution approach[C]//2021 IEEE InternationalConference on Communications.Montreal:IEEE,2021.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗逸豪,曹翔,张钧陶,等.基于深度学习的水下光学图像超分辨率重建综述[J].数字海洋与水下攻防,2023,6(1):17-33

复制
分享
文章指标
  • 点击次数:158
  • 下载次数: 809
  • HTML阅读次数: 311
  • 引用次数: 0
历史
  • 在线发布日期: 2023-03-01
文章二维码