基于颜色-场景联合迁移的水下图像增强方法
作者:
作者单位:

1.华中科技大学 人工智能与自动化学院;2.广州南方学院 大数据与人工智能专业

基金项目:


Joint Color and Scene Adaptation for Underwater Image Enhancement
Author:
Affiliation:

1.School of Artificial Intelligence and Automation,Huazhong University of Science and Technology;2.Big Data and Artificial Intelligence,Nanfang College Guangzhou

Fund Project:

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    水下成像存在颜色畸变、图像对比度严重下降等问题。大多数基于深度学习的水下图像增强方法依赖仿真数据集,由于仿真与实测数据之间存在较大的分布差异,实测泛化能力受限。本文将水下图像增强任务划分为两个更简单但是同时具有明确物理意义的子问题:颜色校正和对比度增强,提出基于物理模型分解的域内-域间迁移框架。首先,域内迁移校正图像颜色,通过学习对退化图像进行分解,在场景光层面通过对齐颜色退化,校正颜色畸变同时保证其他成分完全不受影响。进一步,再次利用基于水下散射模型的分解策略,通过针对性迁移水下退化因素,使得仿真-实测域之间实现相互迁移和交互,增强水下图像对比度。实验结果表明,本方法在真实水下图像数据集上处理的结果,在色彩、纹理细节和清晰程度方面均优于现有的对比方法。

    Abstract:

    Underwater images suffer from the degradations such as color distortion and low-contrast, severely decreasing the image quality. The existing underwater image enhancement methods heavily rely on synthetic data and may face difficulties to generalize well in real scenes, due to the huge domain gap between synthetic and real images. To solve the problem, we formulate the challenging underwater image enhancement task into two easier yet physical meaning sub-problems: color correction and contrast enhancement. We propose a physically disentangled joint intra- and inter-domain adaptation paradigm, in which intra-domain adaptation focuses on color correction and inter-domain procedure transfers knowledge between synthetic and real domains. We first learn to physically disentangle haze images into three components complying with the scattering model: background, transmission map, and atmospheric light. Since color distortion is determined by scene light, we perform intra-domain adaptation by specifically translating scene light from varicolored space to unified color-balanced space, correcting the color distortion. Consequently, we perform inter-domain adaptation between the synthetic and real images by mutually exchanging the background and other two components. Extensive experiments demonstrate the superiority of the proposed method over the state-of-the-art for real varicolored water image enhancement.

    参考文献
    [1] Li C, Guo C, Ren W, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376-4389.
    [2] Schechner Y Y, Karpel N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of oceanic engineering, 2005, 30(3): 570-587.
    [3] 梁健, 巨海娟, 张文飞, 等. 偏振光学成像去雾技术综述[J]. 光学学报, 2017, 37(4): 0400001.
    [4] 郭继昌, 李重仪, 郭春乐, 等. 水下图像增强和复原方法研究进展[J]. 2017.
    [5] Ancuti C O, Ancuti C, De Vleeschouwer C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on image processing, 2017, 27(1): 379-393.
    [6] Liang Z, Wang Y, Ding X, et al. Single underwater image enhancement by attenuation map guided color correction and detail preserved dehazing[J]. Neurocomputing, 2021, 425: 160-172.
    [7] Guraksin G E, Deperlioglu O, Kose U. A novel underwater image enhancement approach with wavelet transform supported by differential evolution algorithm[M]. Nature Inspired Optimization Techniques for Image Processing Applications. Springer, Cham, 2019: 255-278.
    [8] Iqbal M, Riaz M M, Ali S S, et al. Underwater Image Enhancement Using Laplace Decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
    [9] Chao L, Wang M. Removal of Water scattering[C]. 2010 2nd international conference on computer engineering and technology. IEEE, 2010, 2: V2-35-V2-39.
    [10] He K, Sun J, Tang X. Single image haze removal using dark channel prior[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 33(12): 2341-2353.
    [11] Drews P, Nascimento E, Moraes F, et al. Transmission estimation in underwater single images[C]. Proceedings of the IEEE international conference on computer vision workshops. 2013: 825-830.
    [12] Lu H, Li Y, Zhang L, et al. Contrast enhancement for images in turbid Water[J]. JOSA A, 2015, 32(5): 886-893.
    [13] Zhao X, Jin T, Qu S. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 2015, 94: 163-172.
    [14] Xie H L, Peng G H, Wang F, et al. Underwater image restoration based on background light estimation and dark channel prior[J]. Acta Opt. Sin, 2018, 38(01): 18-27.
    [15] Li C Y, Guo J C, Cong R M, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664-5677.
    [16] Zhuang P, Wu J, Porikli F, et al. Underwater image enhancement with hyper-Laplacian reflectance priors[J]. IEEE Transactions on Image Processing, 2022, 31: 5442-5455.
    [17] Islam M J, Xia Y, Sattar J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234.
    [18] Wang Y, Guo J, Gao H, et al. UIEC^ 2-Net: CNN-based underwater image enhancement using two color space[J]. Signal Processing: Image Communication, 2021, 96: 116250.
    [19] Li C, Anwar S, Porikli F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038.
    [20] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232.
    [21] Huang X, Liu M Y, Belongie S, et al. Multimodal unsupervised image-to-image translation[C]. Proceedings of the European conference on computer vision (ECCV). 2018: 172-189.
    [22] Lee H Y, Tseng H Y, Huang J B, et al. Diverse image-to-image translation via disentangled representations[C]. Proceedings of the European conference on computer vision (ECCV). 2018: 35-51.
    [23] pattern analysis and machine intelligence, 2010, 33(12): 2341-2353.
    [24] Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization[C]. Proceedings of the IEEE international conference on computer vision. 2017: 1501-1510.
    [25] https://colorcorrection.firebaseapp.com/
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:125
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-12-19
  • 最后修改日期:2022-12-26
  • 录用日期:2022-12-27
文章二维码